(1)證明:連接AM,過點D作DP⊥BC于點P,過點A作AQ⊥BC于點Q,
即AQ∥DP,
∵AD∥BC,
∴四邊形ADPQ是平行四邊形,
∴AD=QP=AB=CD,
∵∠C=∠B=60°,
∴∠BAQ=∠CDP=30°,
∴CP=BQ=
AB=1,
即BC=1+1+2=4,
∵CD=2,
∴BC=2CD,
∵點M是BC的中點,
BC=2CM,
∴CD=CM,
∵∠C=60°,
∴△MDC是等邊三角形.
(2)解:△AEF的周長存在最小值,理由如下:
過D作DN⊥BC于N,連接AM,
∵∠C=60°,
∴∠CDN=30°,
∵CD=2,
∴CN=1,
∴由勾股定理得:DN=
,
連接AM,由(1)平行四邊形ABMD是菱形,
△MAB,△MAD和△MC′D′是等邊三角形,
∠BMA=∠BME+∠AME=60°,∠EMF=∠AMF+∠AME=60°,
∴∠BME=∠AMF,
在△BME與△AMF中,
,
∴△BME≌△AMF(ASA),
∴BE=AF,ME=MF,AE+AF=AE+BE=AB,
∵∠EMF=∠DMC=60°,故△EMF是等邊三角形,EF=MF,
∵MF的最小值為點M到AD的距離等于DN的長,即是
,即EF的最小值是
,
△AEF的周長=AE+AF+EF=AB+EF,
△AEF的周長的最小值為2+
,
答:存在,△AEF的周長的最小值為2+
.
(1)過點D作DP⊥BC于點P,過點A作AQ⊥BC于點Q,得到CP=BQ=
AB,CP+BQ=
AB=1,得出BC=2CD,由點M是BC的中點,推出CM=CD,由∠C=60°,根據(jù)等邊三角形的判定即可得到答案;
(2)△AEF的周長存在最小值,理由是連接AM,由ABMD是菱形,得出△MAB,△MAD和△MC′D′是等邊三角形,推出∠BME=∠AMF,證出△BME≌△AMF(ASA),得出BE=AF,ME=MF,推出△EMF是等邊三角形,根據(jù)MF的最小值為點M到AD的距離
,即EF的最小值是
,即可求出△AEF的周長.