【題目】一次函數(shù)y=-x+1(0≤x≤10)與反比例函數(shù)y= (-10≤x<0)在同一平面直角坐標系中的圖象如圖所示,點(x1 , y1),(x2 , y2)是圖象上兩個不同的點,若y1=y2 , 則x1+x2的取值范圍是( )
A.- ≤x≤1
B.- ≤x≤
C.- ≤x≤
D.1≤x≤
【答案】B
【解析】當x=-10時,y= =- ,
當x=10時,y=-x+1=-9,
∴-9≤y1=y2≤- ;
設(shè)x1<x2 , 則y2=-x2+1、y1= ,
∴x2=1-y2 , x1= ,
∴x1+x2=1-y2+ ;
設(shè)x=1-y+ (-9≤y≤- ),-9≤ym<yn≤- ,
則xn-xm=ym-yn+ =(ym-yn)(1+ )<0,
∴x=1-y+ 中x值隨y值的增大而減小,
∴1-(- )-10=- ≤x≤1-(-9)- = ,
故答案為:B.
根據(jù)x的取值范圍及y1=y2可求出y的取值范圍,再根據(jù)y關(guān)于x的關(guān)系式可得出x關(guān)于y的關(guān)系式,利用做差法求出x=1-y+,然后結(jié)合y的取值范圍-9≤y1=y2≤-中的單調(diào)性,就可求出x1+x2的取值范圍。
科目:初中數(shù)學(xué) 來源: 題型:
【題目】現(xiàn)有若干本書分給班上的同學(xué),若每人分5本,則還缺20本;若每人分4本,則剩余25本.班上共有多少名同學(xué)?多少本書?
(1)設(shè)班上共有x名同學(xué),根據(jù)題意列方程;
(2)設(shè)共有y本書,根據(jù)題意列方程;
(3)選擇上面的一種設(shè)未知數(shù)的方法,解決問題.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y=kx+b(k≠0)與反比例函數(shù)y= (m≠0)的圖象有公共點A(1,a)、D(﹣2,﹣1).直線l與x軸垂直于點N(3,0),與一次函數(shù)和反比例函數(shù)的圖象分別交于點B、C.
(1)求一次函數(shù)與反比例函數(shù)的解析式;
(2)根據(jù)圖象回答,x在什么范圍內(nèi),一次函數(shù)的值大于反比例函數(shù)的值;
(3)求△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某開發(fā)公司生產(chǎn)的 960 件新產(chǎn)品需要精加工后,才能投放市場,現(xiàn)甲、乙兩個工廠都想加工這批產(chǎn)品,已知甲工廠單獨加工完成這批產(chǎn)品比乙工廠單獨加工完成這批產(chǎn)品多用 20 天,而甲工廠每天加工的數(shù)量是乙工廠每天加工的數(shù)量的,公司需付甲工廠加工費用為每天 80 元,乙工廠加工費用為每天 120 元.
(1)甲、乙兩個工廠每天各能加工多少件新產(chǎn)品?
(2)公司制定產(chǎn)品加工方案如下:可以由每個廠家單獨完成,也可以由兩個廠家合作完成.在加工過程中,公司派一名工程師每天到廠進行技術(shù)指導(dǎo),并負擔(dān)每天 15 元的午餐補助費, 請你幫公司選擇一種既省時又省錢的加工方案,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,BC∥AD,添加下列條件,不能判定四邊形ABCD是平行四邊形的是( 。
A.AB=CDB.AB∥CDC.∠A=∠CD.BC=AD
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校在“漢字聽寫”大賽中,準備一次性購買若干鋼筆和筆記本(每支鋼筆的價格相同,每本筆記本的價格相同)作為優(yōu)勝者的獎品,已知購買3支鋼筆和4本筆記本共需88元,購買4支鋼筆和5本筆記本共需114元.
(1)求購買一支鋼筆和一本筆記本各需多少元?
(2)學(xué)校準備購買鋼筆和筆記本共80件獎品,根據(jù)規(guī)定購買的總費用不能超過1200元,求最多可以購買多少支鋼筆?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,在中,,過上一點作交于點,以為頂點,為一邊,作,另一邊交于點.
(1)求證:四邊形為平行四邊形;
(2)當點為中點時,的形狀為 ;
(3)延長圖①中的到點使連接得到圖②,若判斷四邊形的形狀,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,小穎利用一個銳角是30°的三角板測量一棵樹的高度,已知她與樹之間的水平距離BE為5m,AB為1.5m(即小穎的眼睛距地面的距離),那么這棵樹高是( )
A.4m
B. m
C.(5 + )m
D.( + )m
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com