已知關(guān)于x的方程x2-kx+k-1=0.
(1)求證:當(dāng)k>2時(shí),方程總有兩個(gè)不相等的實(shí)數(shù)根;
(2)若二次函數(shù)y=x2-kx+k-1(k>2)的圖象與x軸交于A,B兩點(diǎn)(A在B的左側(cè)),與y軸交于點(diǎn)C,且tan∠OAC=4,求該二次函數(shù)的解析式;
(3)已知點(diǎn)P(m,0)是x軸上的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)P作垂直于x軸的直線(xiàn)交(2)中的二次函數(shù)圖象于點(diǎn)M,交一次函數(shù)y=px+q的圖象于點(diǎn)N.若只有當(dāng)1<m<5時(shí),點(diǎn)M位于點(diǎn)N的下方,求一次函數(shù)y=px+q的解析式.
考點(diǎn):二次函數(shù)綜合題
專(zhuān)題:
分析:(1)求出△=(-k)2-4×1×(k-1)=(k-2)2,根據(jù)k>2,可得△恒大于0,可判斷方程總有兩個(gè)不相等的實(shí)數(shù)根;
(2)令y=0,求出A、B的坐標(biāo),然后求出點(diǎn)C的坐標(biāo),根據(jù)tan∠OAC=4,將OC和OA代入求出k的值,即可得出解析式;
(3)根據(jù)題意結(jié)合圖形求出交點(diǎn)的坐標(biāo),然后將交點(diǎn)坐標(biāo)代入y=px+q,求出p、q的值,繼而可得出一次函數(shù)解析式.
解答:解:(1)證明:∵△=(-k)2-4×1×(k-1)=(k-2)2,
又∵k>2,∴k-2>0,
∴(k-2)2>0,即△>0,
∴當(dāng)k>2時(shí),方程總有兩個(gè)不相等的實(shí)數(shù)根;

(2)∵y=x2-kx+k-1(k>2)與x軸交于A、B兩點(diǎn),
∴令y=0,有x2-kx+k-1=0,
解得:x=1,或x=k-1,
∵k>2,點(diǎn)A在點(diǎn)B的左側(cè),
∴A(1,0),B(k-1,0).
∵拋物線(xiàn)與y軸交于點(diǎn)C,
∴C(0,k-1),
在Rt△AOC中,tan∠OAC=
OC
OA
=
k-1
1
=4,
解得:k=5,
∴拋物線(xiàn)的解析式為y=x2-5x+4;

(3)依題意并結(jié)合圖象可知,一次函數(shù)的圖象與二次函數(shù)的圖象交點(diǎn)的橫坐標(biāo)分別為1和5,
則交點(diǎn)坐標(biāo)為(1,0)和(5,4),
將交點(diǎn)坐標(biāo)分別代入一次函數(shù)解析式y(tǒng)=px+q中,
p+q=0
5p+q=4
,
解得:
p=1
q=-1
,
故一次函數(shù)的解析式為y=x-1.
點(diǎn)評(píng):本題考查了二次函數(shù)與一次函數(shù)的綜合運(yùn)用,涉及了利用根的判別式判斷根的情況,利用待定系數(shù)法求一次函數(shù)解析式,第三問(wèn)的關(guān)鍵是利用數(shù)形結(jié)合確定交點(diǎn)的坐標(biāo),難度較大.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知實(shí)數(shù)a,b,c滿(mǎn)足a+b+c=1,
1
a+b-c
+
1
b+c-a
+
1
c+a-b
=1,求abc的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,雙曲線(xiàn)y=
k
x
(k≠0)過(guò)第二象限內(nèi)的點(diǎn)A,AB⊥x軸于B,OB=2,若直線(xiàn)y=ax+b經(jīng)過(guò)點(diǎn)A,并且經(jīng)過(guò)雙曲線(xiàn)上另一點(diǎn)C(4,-
3
2
).
(1)求雙曲線(xiàn)的解析式和直線(xiàn)AC的解析式.
(2)求△AOC的面積.
(3)根據(jù)圖象直接寫(xiě)出
k
x
>ax+b的x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知點(diǎn)P、Q是數(shù)軸上的兩個(gè)動(dòng)點(diǎn),且P、Q兩點(diǎn)的速度比是1:3.(速度單位:?jiǎn)挝婚L(zhǎng)度/秒)

(1)動(dòng)點(diǎn)P從原點(diǎn)出發(fā)向數(shù)軸負(fù)方向運(yùn)動(dòng),同時(shí),動(dòng)點(diǎn)Q也從原點(diǎn)出發(fā)向數(shù)軸正方向運(yùn)動(dòng),4秒時(shí),兩點(diǎn)相距16個(gè)單位長(zhǎng)度.求兩個(gè)動(dòng)點(diǎn)的速度,并在數(shù)軸上標(biāo)出P、Q兩點(diǎn)從原點(diǎn)出發(fā)運(yùn)動(dòng)4秒時(shí)的位置.
(2)如果P、Q兩點(diǎn)從(1)中4秒時(shí)的位置同時(shí)向數(shù)軸負(fù)方向運(yùn)動(dòng),那么再經(jīng)過(guò)幾秒,點(diǎn)P、Q到原點(diǎn)的距離相等?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

甲騎摩托車(chē),乙騎自行車(chē)從相距25km的兩地相向而行.
(1)甲、乙同時(shí)出發(fā)經(jīng)過(guò)0.5小時(shí)相遇,且甲每小時(shí)行駛路程是乙每小時(shí)行駛路程的3倍少6km,求乙騎自行車(chē)的速度.
(2)在甲騎摩托車(chē)和乙騎自行車(chē)與(1)相同的前提下,若乙先出發(fā)0.5小時(shí),甲才出發(fā),問(wèn):甲出發(fā)幾小時(shí)后兩人相遇?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

畫(huà)出下列幾何體的三視圖.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在Rt△ABC中,AB=5,AC=12,∠A=90°.
(1)尺規(guī)作圖:作斜邊BC的垂直平分線(xiàn);(不寫(xiě)作法,保留作圖痕跡)
(2)設(shè)(1)中的垂直平分線(xiàn)交AC于E,交BC于D,求線(xiàn)段DE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在平面直角坐標(biāo)系中,拋物線(xiàn)C1:y=-x2+2x+3的頂點(diǎn)為A,與x軸交于兩點(diǎn).
(1)求A.B.C三點(diǎn)的坐標(biāo).
(2)在坐標(biāo)平面內(nèi)存在點(diǎn)D,使四邊形ABCD為平行四邊形,求過(guò)A、C、D的拋物線(xiàn)的表達(dá)式.
(3)拋物線(xiàn)C2與拋物線(xiàn)C1是否成中心對(duì)稱(chēng)?若對(duì)稱(chēng),請(qǐng)直接寫(xiě)出對(duì)稱(chēng)中心;若不對(duì)稱(chēng),說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

小亮應(yīng)聘小記者,進(jìn)行了三項(xiàng)素質(zhì)測(cè)試,測(cè)試成績(jī)分別是:采訪(fǎng)寫(xiě)作90分,計(jì)算機(jī)輸入85分,創(chuàng)意設(shè)計(jì)70分,若將采訪(fǎng)寫(xiě)作、計(jì)算機(jī)輸入、創(chuàng)意設(shè)計(jì)三項(xiàng)成績(jī)按5:2:3的比例來(lái)計(jì)算平均成績(jī),則小亮的平均成績(jī)是
 
 分.

查看答案和解析>>

同步練習(xí)冊(cè)答案