【題目】如圖,在△ABC中,AB=AC,D是BC上任意一點,過點D分別向AB、AC引垂線,垂足分別為點E、F.
(1)如圖①,當(dāng)點D在BC的什么位置時,DE=DF?并證明;
(2)在滿足第一問的條件下,連接AD,此時圖中共有幾對全等三角形?請寫出所有的全等三角形(不必證明);
(3)如圖②,過點C作AB邊上的高CG,請問DE、DF、CG的長之間存在怎樣的等量關(guān)系?并加以證明.
【答案】(1)當(dāng)點D在BC的中點上時,DE=DF,證明見解析;(2)有3對全等三角形,有△BED≌△CFD,△ADB≌△ADC,△AED≌△AFD;(3)CG=DE+DF,證明見解析.
【解析】
試題分析:(1)因為當(dāng)△BED和△CFD時,DE=DF,所以當(dāng)點D在BC中點時,可利用AAS判定△BED和△CFD全等,利用全等三角形的性質(zhì)可得DE=DF,
(2)在(1)的結(jié)論下:DE=DF,BD=CD, 利用SSS可判定△ADB≌△ADC,
利用HL可判定△AED≌△AFD,利用AAS可判定△BED≌△CFD,所以有3對全等三角形.
(3)連接AD,根據(jù)三角形的面積公式即可求證.
(1)當(dāng)點D在BC的中點上時,DE=DF,
證明:∵D為BC中點,
∴BD=CD,
∵AB=AC,
∴∠B=∠C,
∵DE⊥AB,DF⊥AC,
∴∠DEB=∠DFC=90°,
∵在△BED和CFD中,
∴△BED≌△CFD(AAS),
∴DE=DF.
(2)
有3對全等三角形,有△BED≌△CFD,△ADB≌△ADC,△AED≌△AFD,
(3)CG=DE+DF,
證明:連接AD,
因為,
所以,
因為AB=AC,
所以.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD中,AB=AD=2,∠A=60°,BC=,CD=3.
(1)求∠ADC的度數(shù);
(2)求四邊形ABCD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知直線y=3x﹣3分別交x軸、y軸于A、B兩點,拋物線y=x2+bx+c經(jīng)過A、B兩點,點C是拋物線與x軸的另一個交點(與A點不重合).
(1)求拋物線的解析式:
(2)求△ABC的面積;
(3)在拋物線的對稱軸上,是否存在點M,使△ABM周長最短?若不存在,請說明理由;若存在,求出點M的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某個體經(jīng)營戶銷售同一型號的A、B兩種品牌的服裝,平均每月共銷售60件,已知兩種品牌的成本和利潤如表所示,設(shè)平均每月的利潤為y元,每月銷售A品牌x件.
(1)寫出y關(guān)于x的函數(shù)關(guān)系式.
(2)如果每月投入的成本不超過6500元,所獲利潤不少于2920元,不考慮其他因素,那么銷售方案有哪幾種?
(3)在(2)的條件下要使平均每月利潤率最大,請直接寫出A、B兩種品牌的服裝各銷售多少件?
A | B | |
成本(元/件) | 120 | 85 |
利潤(元/件) | 60 | 30 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,D是BC的中點,過D點的直線GF交AC于F,交AC的平行線BG于G點,DE⊥DF,交AB于點E,連結(jié)EG、EF.
(1)求證:BG=CF.
(2)請你判斷BE+CF與EF的大小關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】學(xué)校“數(shù)學(xué)魔盜團”社團準(zhǔn)備購買A,B兩種魔方,已知購買2個A種魔方和6個B種魔方共需130元,購買1個A種魔方比1個B種魔方多花5元.
(1)求這兩種魔方的單價;
(2)結(jié)合社員們的需求,社團決定購買A,B兩種魔方共100個(其中A種魔方不超過50個).“雙11期間”某商店有兩種優(yōu)惠活動,如圖所示.請根據(jù)以上信息填空:購買A種魔方________個時選擇活動一盒活動二購買所需費用相同.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】列一元一次方程解應(yīng)用題:
某管道由甲、乙兩工程隊單獨施工分別需要30天、20天.
(1)如果兩隊從管道兩端同時施工,需要多少天完工?
(2)又知甲隊單獨施工每天需付200元施工費,乙隊單獨施工每天需付280元施工費,那么是由甲隊單獨施工,還是由乙隊單獨施工,還是由兩隊同時施工?請你按照少花錢多辦事的原則,設(shè)計一個方案,并通過計算說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在ABCD中,E、F分別為邊AB、CD的中點,AC是對角線,過點B作BG∥AC交DA的延長線于點G.
(1)求證:CE∥AF;
(2)若∠G=90°,求證:四邊形CEAF是菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】運動時心跳速率通常和人的年齡有關(guān)。用a表示一個人的年齡,用b表示正常情況下這個人在運動時所能承受的每分鐘心跳的最高次數(shù),則.
(1)正常情況下,一個14歲的少年運動時所能承受的每分鐘心跳的最高次數(shù)是多少?
(2)當(dāng)一個人的年齡增加10歲時,他運動時承受的每分鐘心跳最高次數(shù)有何變化?變化次數(shù)是多少?
(3)一個45歲的人運動時,10秒心跳次數(shù)為22次,請問他有危險嗎?為什么?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com