【題目】隨著移動互聯(lián)網(wǎng)的快速發(fā)展,基于互聯(lián)網(wǎng)的共享單車應運而生.為了解某單位使用共享單車的情況,該單位有200名員工,某研究小組隨機采訪10位員工,得到這10位員工一周內(nèi)使用共享單車的次數(shù)分別為:17,12,1520,170,726,17,9

1)這組數(shù)據(jù)的中位數(shù)是   ,眾數(shù)是   

2)試用平均數(shù)估計該單位員工一周內(nèi)使用共享單車的總次數(shù).

【答案】116,17;

2)這10位居民一周內(nèi)使用共享單車的平均次數(shù)是14

【解析】

1)將數(shù)據(jù)按照大小順序重新排列,計算出中間兩個數(shù)的平均數(shù)即是中位數(shù),出現(xiàn)次數(shù)最多的即為眾數(shù);
2)根據(jù)平均數(shù)的概念,將所有數(shù)的和除以10即可;

解:(1)按照大小順序重新排列后,第5、第6個數(shù)分別是1517,所以中位數(shù)是(15+17÷216,17出現(xiàn)3次最多,所以眾數(shù)是17,

故答案是16,17;

2×0+7+9+12+15+17×3+20+26)=14,

答:這10位居民一周內(nèi)使用共享單車的平均次數(shù)是14次;

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】直徑為10的⊙O中,弦AB平行于弦CD,若弦AB=8,弦CD=6,則 AB,弦CD之間的距離=_____.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知Ax1y1),Bx2y2)是二次函數(shù)上y=ax2-2ax+a-ca≠0)的兩點,若x1≠x2,且y1=y2,則當 自變量x的值取x1+x2時,函數(shù)值為(

A. -cB. cC. -a+cD. a-c

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在等邊三角形ABC中,BC6cm,射線AGBC,點E從點A出發(fā)沿射線AG1cm/s的速度運動,點F從點B出發(fā)沿射線BC2cm/s的速度運動.如果點E、F同時出發(fā),設運動時間為t(s)t______s時,以A、CE、F為頂點四邊形是平行四邊形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列函數(shù)中,y關于x的二次函數(shù)是( )

A. yax2+bx+c B. yx(x1)

C. y= D. y(x1)2x2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在等腰△ABC中,ACBC3AB6,點E從點B沿著射線BA以每秒3個單位的速度運動,過點EBC的平行線交∠ACB的外角平分線CF于點F

1)求證:四邊形BCFE是平行四邊形;

2)當點E是邊AB的中點時,連結AF,試判斷四邊形AECF的形狀,并說明理由;

3)設運動時間為t秒,是否存在t的值,使得以△EFC的其中兩邊為邊所構造的平行四邊形恰好是菱形?若存在,請求出t的值;若不存在,試說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在長方形ABCD中,邊ABBC的長(ABBC)是方程x2﹣7x+12=0的兩個根.點P從點A出發(fā),以每秒1個單位的速度沿△ABCA→B→C→A的方向運動,運動時間為t(秒).

1)求ABBC的長;

2)當點P運動到邊BC上時,試求出使AP長為時運動時間t的值;

3)當點P運動到邊AC上時,是否存在點P,使△CDP是等腰三角形?若存在,請求出運動時間t的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】網(wǎng)絡銷售是一種重要的銷售方式.某鄉(xiāng)鎮(zhèn)農(nóng)貿(mào)公司新開設了一家網(wǎng)店,銷售當?shù)剞r(nóng)產(chǎn)品.其中一種當?shù)靥禺a(chǎn)在網(wǎng)上試銷售,其成本為每千克10元.公司在試銷售期間,調查發(fā)現(xiàn),每天銷售量ykg)與銷售單價x(元)滿足如圖所示的函數(shù)關系(其中).

1)直接寫出yx之間的函數(shù)關系式及自變量的取值范圍.

2)若農(nóng)貿(mào)公司每天銷售該特產(chǎn)的利潤要達到3100元,則銷售單價x應定為多少元?

3)設每天銷售該特產(chǎn)的利潤為W元,若,求:銷售單價x為多少元時,每天的銷售利潤最大?最大利潤是多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】隨著互聯(lián)網(wǎng)的發(fā)展,同學們的學習習慣也有了改變,一些同學在做題遇到困難時,喜歡上網(wǎng)查找答案.針對這個問題,某校調查了部分學生對這種做法的意見(分為:贊成、無所謂、反對),并將調查結果繪制成圖1和圖2兩個不完整的統(tǒng)計圖.

請根據(jù)圖中提供的信息,解答下列問題:

(1)此次抽樣調查中,共調查了多少名學生?

(2)將圖1補充完整;

(3)求出扇形統(tǒng)計圖中持反對意見的學生所在扇形的圓心角的度數(shù);

(4)根據(jù)抽樣調查結果,請你估計該校1500名學生中有多少名學生持無所謂意見.

查看答案和解析>>

同步練習冊答案