【題目】如圖,在平面直角坐標(biāo)系中,已知A(0,a),B(b,0),其中a,b滿足|a﹣2|+(b﹣3)2=0.
(1)a= , b=;
(2)如果在第二象限內(nèi)有一點(diǎn)M(m,1),請用含m的式子表示四邊形ABOM的面積;
(3)在(2)條件下,當(dāng)m=﹣ 時,在坐標(biāo)軸的負(fù)半軸上求點(diǎn)N(的坐標(biāo)),使得△ABN的面積與四邊形ABOM的面積相等.(直接寫出答案)
【答案】
(1)2,3
(2)解:∵在第二象限內(nèi)有一點(diǎn)M(m,1),
∴S△AMO= ×AO×(﹣m)=﹣m,
S△AOB= ×AO×OB=3,
∴四邊形ABOM的面積為:3﹣m;
(3)解:∵當(dāng)m=﹣ 時,△ABN的面積與四邊形ABOM的面積相等,
當(dāng)N在x軸的負(fù)半軸時,設(shè)N點(diǎn)坐標(biāo)為:(c,0),
則 ×2(3﹣c)=3﹣(﹣ ),
解得:c=﹣1.5,
故N(﹣1.5,0),
當(dāng)N在y軸的負(fù)半軸時,設(shè)N點(diǎn)坐標(biāo)為:(0,d),
則 ×3(2﹣d)=3﹣(﹣ ),
解得:d=﹣1,
故N(0,﹣1),
綜上所述:N點(diǎn)坐標(biāo)為:(﹣1.5,0),(0,﹣1).
【解析】解:(1)∵|a﹣2|+(b﹣3)2=0,
∴a﹣2=0,b﹣3=0,
解得:a=2,b=3,
所以答案是:2,3;
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某廠商投產(chǎn)一種新型電子產(chǎn)品,每件制造成本為18元,試銷過程中發(fā)現(xiàn),每月銷售量y(萬件)與銷售單價x(元)之間的關(guān)系可以近似地看作一次函數(shù)y=-2x+100.(利潤=售價-制造成本)
(1)寫出每月的利潤z(萬元)與銷售單價x(元)之間的函數(shù)關(guān)系式;
(2)當(dāng)銷售單價為多少元時,廠商每月能獲得350萬元的利潤?當(dāng)銷售單價為多少元時,廠商每月能獲得最大利潤?最大利潤是多少?
(3)根據(jù)相關(guān)部門規(guī)定,這種電子產(chǎn)品的銷售單價不能高于32元,如果廠商要獲得每月不低于350萬元的利潤,那么制造出這種產(chǎn)品每月的最低制造成本需要多少萬元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校九年級所有學(xué)生參加2011年初中畢業(yè)英語口語、聽力自動化考試,我們從中隨機(jī)抽取了部分學(xué)生的考試成績,將他們的成績進(jìn)行統(tǒng)計后分為A、B、C、D四等,并將統(tǒng)計結(jié)果繪制成如下的統(tǒng)計圖,請你結(jié)合圖中所給信息解答下列問題:
(說明:A級:25分~30分;B級:20分~24分;C級:15分~19分;D級:15分以下)
(1)請把條形統(tǒng)計圖補(bǔ)充完整;
(2)扇形統(tǒng)計圖中D級所占的百分比是;
(3)扇形統(tǒng)計圖中A級所在的扇形的圓心角度數(shù)是;
(4)若該校九年級有850名學(xué)生,請你估計全年級A級和B級的學(xué)生人數(shù)共約為人.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】人體中紅細(xì)胞的直徑約為0.0000077m,將數(shù)0.0000077m用科學(xué)記數(shù)法表示為( )
A. 7.7×10-6 B. 0.77×10-7 C. 77×10-5 D. 7.7×10-7
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD是正方形,E是AD上任意一點(diǎn),延長BA到F,使得AF=AE,連接DF:
(1)旋轉(zhuǎn)△ADF可得到哪個三角形?
(2)旋轉(zhuǎn)中心是哪一點(diǎn)?旋轉(zhuǎn)了多少度?
(3)BE與DF的數(shù)量關(guān)系、位置關(guān)系如何?為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知☉O上兩個定點(diǎn)A、B和兩個動點(diǎn)C、D,AC與BD交于點(diǎn)E。
(1)如圖1,求證EA·EC=EB·ED
(2)如圖2,若弧AB=弧BC,AD是☉O的直徑,求證;AD·AC=2BD·BC
(3)如圖3,若AC上BD,BC=3,求點(diǎn)0到弦AD的距離。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,點(diǎn)P,點(diǎn)Q分別代表兩個小區(qū),直線l代表兩個小區(qū)中間的一條公路.根據(jù)居民出行的需要,計劃在公路l上的某處設(shè)置一個公交站點(diǎn).
①若考慮到小區(qū)P居住的老年人較多,計劃建一個離小區(qū)P最近的車站,請在公路l上畫出車站的位置(用點(diǎn)M表示);
②若考慮到修路的費(fèi)用問題,希望車站的位置到小區(qū)P和小區(qū)Q的距離之和最小,請在公路l上畫出車站的位置(用點(diǎn)N表示).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列事件中必然事件有( )
A.打開電視機(jī),正播放新聞
B.通過長期努力學(xué)習(xí),你會成為數(shù)學(xué)家
C.從一副撲克牌中任意抽取一張牌,花色是紅桃
D.某校在同一年出生的有367名學(xué)生,則至少有兩人的生日是同一天
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com