【題目】如圖,已知直線l與⊙O相離,OA⊥l于點(diǎn)A,交⊙O于點(diǎn)P,OA=5,AB與⊙O相切于點(diǎn)B,BP的延長線交直線l于點(diǎn)C.
(1)求證:AB=AC.
(2)若PC=2 ,求⊙O的半徑.
【答案】
(1)證明:連接OB,
∵OB=OP,
∴∠OPB=∠OBP,
∵∠OPB=∠APC,
∴∠OBP=∠APC,
∵AB與⊙O相切于點(diǎn)B,
∴OB⊥AB,
∴∠ABO=90°,
∴∠ABP+∠OBP=90°,
∵OA⊥AC,
∴∠OAC=90°,
∴∠ACB+∠APC=90°,
∴∠ABP=∠ACB,
∴AB=AC
(2)證明:設(shè)⊙O的半徑為r,
在Rt△AOB中,AB2=OA2﹣OB2=52﹣r2,
在Rt△ACP中,AC2=PC2﹣PA2,
AC2=(2 )2﹣(5﹣r)2,
∵AB=AC,
∴52﹣r2=(2 )2﹣(5﹣r)2,
解得:r=3,
則⊙O的半徑為3.
【解析】(1)由同圓半徑相等和對頂角相等得∠OBP=∠APC,由圓的切線性質(zhì)和垂直得∠ABP+∠OBP=90°和∠ACB+∠APC=90°,則∠ABP=∠ACB,根據(jù)等角對等邊得AB=AC;(2)設(shè)⊙O的半徑為r,分別在Rt△AOB和Rt△ACP中根據(jù)勾股定理列等式,并根據(jù)AB=AC得52﹣r2=(2 )2﹣(5﹣r)2 , 求出r的值即可.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】由于霧霾天氣趨于嚴(yán)重,我市某電器商城根據(jù)民眾健康需求,代理銷售某種家用空氣凈化器,其進(jìn)價(jià)是200元/臺.經(jīng)過市場銷售后發(fā)現(xiàn):在一個(gè)月內(nèi),當(dāng)售價(jià)是400元/臺時(shí),可售出200臺,且售價(jià)每降低10元,就可多售出50臺.若供貨商規(guī)定這種空氣凈化器售價(jià)不能低于300元/臺,代理銷售商每月要完成不低于450臺的銷售任務(wù).
(1)完成下列表格,并直接寫出月銷售量y(臺)與售價(jià)x(元/臺)之間的函數(shù)關(guān)系式及售價(jià)x的取值范圍;
售價(jià)(元/臺) | 月銷售量(臺) |
400 | 200 |
250 | |
x |
(2)當(dāng)售價(jià)x(元/臺)定為多少時(shí),商場每月銷售這種空氣凈化器所獲得的利潤w(元)最大?最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在ABCD中,AB⊥BD, = ,將ABCD放置在平面直角坐標(biāo)系中,且AD⊥x軸,點(diǎn)D的橫坐標(biāo)為1,點(diǎn)C的縱坐標(biāo)為3,恰有一條雙曲線 (k>0)同時(shí)經(jīng)過B、D兩點(diǎn),則點(diǎn)B的坐標(biāo)是
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某公司需招聘一名員工,對應(yīng)聘者甲、乙、丙從筆試、面試、體能三個(gè)方面進(jìn)行量化考核.甲、乙、丙各項(xiàng)得分如下表:
筆試 | 面試 | 體能 | |
甲 | 83 | 79 | 90 |
乙 | 85 | 80 | 75 |
丙 | 80 | 90 | 73 |
(1)根據(jù)三項(xiàng)得分的平均分,從高到低確定三名應(yīng)聘者的排名順序.
(2)該公司規(guī)定:筆試,面試、體能得分分別不得低于80分,80分,70分,并按60%,30%,10%的比例計(jì)入總分.根據(jù)規(guī)定,請你說明誰將被錄用.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一堂關(guān)于“折紙問題”的數(shù)學(xué)綜合實(shí)踐探究課中,小明同學(xué)將一張矩形ABCD紙片,按如圖進(jìn)行折疊,分別在BC、AD兩邊上取兩點(diǎn)E,F(xiàn),使CE=AF,分別以DE,BF為對稱軸將△CDE與△ABF翻折得到△C′DE與△A′BF,且邊C′E與A′B交于點(diǎn)G,邊A′F與C′D交于一點(diǎn)H.已知tan∠EBG= ,A′G=6,C′G=1,則矩形紙片ABCD的周長為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)A是雙曲線y= (x>0)上的一點(diǎn),連結(jié)OA,在線段OA上取一點(diǎn)B,作BC⊥x軸于點(diǎn)C,以BC的中點(diǎn)為對稱中心,作點(diǎn)O的中心對稱點(diǎn)O′,當(dāng)O′落在這條雙曲線上時(shí), = .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,ABCD中,AB=3cm,AD=6cm,∠ADC的角平分線DE交BC于點(diǎn)E,交AC于點(diǎn)F,CG⊥DE,垂足為G,DG= cm,則EF的長為( )
A.2cm
B. cm
C.1cm
D. cm
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,△ABC的三個(gè)頂點(diǎn)坐標(biāo)分別為A(1,1),B(4,0),C(4,4).
(1)按下列要求作圖:
①將△ABC向左平移4個(gè)單位,得到△A1B1C1;
②將△A1B1C1繞點(diǎn)B1逆時(shí)針旋轉(zhuǎn)90°,得到△A2B2C2 .
(2)求點(diǎn)C1在旋轉(zhuǎn)過程中所經(jīng)過的路徑長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,△ABC內(nèi)接于⊙O,∠BAC的平分線AD交⊙O于點(diǎn)D,交BC于點(diǎn)E,過點(diǎn)D作DF∥BC,交AB的延長線于點(diǎn)F.
(1)求證:△BDE∽∠ADB;
(2)試判斷直線DF與⊙O的位置關(guān)系,并說明理由;
(3)如圖2,條件不變,若BC恰好是⊙O的直徑,且AB=6,AC=8,求DF的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com