【題目】如圖,△ABC面積為1,第一次操作:分別延長AB,BC,CA至點(diǎn)A1 , B1 , C1 , 使A1B=AB,B1C=BC,C1A=CA,順次連接A1 , B1 , C1 , 得到△A1B1C1 . 第二次操作:分別延長A1B1 , B1C1 , C1A1至點(diǎn)A2 , B2 , C2 , 使A2B1=A1B1 , B2C1=B1C1 , C2A1=C1A1 , 順次連接A2 , B2 , C2 , 得到△A2B2C2 , …按此規(guī)律,要使得到的三角形的面積超過2010,最少經(jīng)過( 。┐尾僮鳎
A.6
B.5
C.4
D.3
【答案】C
【解析】解:△ABC與△A1BB1底相等(AB=A1B),高為1:2(BB1=2BC),故面積比為1:2,
∵△ABC面積為1,
∴S△A1B1B=2.
同理可得,S△C1B1C=2,S△AA1C=2,
∴S△A1B1C1=S△C1B1C+S△AA1C+S△A1B1B+S△ABC=2+2+2+1=7;
同理可證S△A2B2C2=7S△A1B1C1=49,
第三次操作后的面積為7×49=343,
第四次操作后的面積為7×343=2401.
故按此規(guī)律,要使得到的三角形的面積超過2010,最少經(jīng)過4次操作.
故選C.
先根據(jù)已知條件求出△A1B1C1及△A2B2C2的面積,再根據(jù)兩三角形的倍數(shù)關(guān)系求解即可.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】五個(gè)有理數(shù)的積為負(fù)數(shù),則這五個(gè)數(shù)中正因數(shù)的個(gè)數(shù)是 ( )
A.2個(gè)
B.1,3或5
C.0,2或4
D.無法確定
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】五個(gè)有理數(shù)的積是負(fù)數(shù),則五個(gè)數(shù)中負(fù)因數(shù)的個(gè)數(shù)是( )
A.1
B.4
C.5
D.1或3或5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是兩塊完全一樣的含30°角的直角三角尺,分別記做△ABC與△A′B′C′,現(xiàn)將兩塊三角尺重疊在一起,設(shè)較長直角邊的中點(diǎn)為M,繞中點(diǎn)M轉(zhuǎn)動上面的三角尺ABC,使其直角頂點(diǎn)C恰好落在三角尺A′B′C′的斜邊A′B′上.當(dāng)∠A=30°,AC=10時(shí),兩直角頂點(diǎn)C,C′間的距離是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】50個(gè)有理數(shù)相乘的積為0,那么( )
A.每一個(gè)因數(shù)都是0
B.每一個(gè)因數(shù)都不為0
C.最多有一個(gè)因數(shù)不為0
D.至少有一個(gè)因數(shù)為0
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“蜀”你最好!疫情發(fā)生以來,四川累計(jì)派出1463名醫(yī)護(hù)人員支援湖北.?dāng)?shù)字1463用科學(xué)記數(shù)法表示為( )
A.0.1463×104B.1.463×103C.14.63×102D.1.463×104
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】按如圖所示的方式作正方形和等腰直角三角形.若第一個(gè)正方形的邊長AB=1,第一個(gè)正方形與第一個(gè)等腰直角三角形的面積和為S1,第二個(gè)正方形與第二個(gè)等腰直角三角形的面積和為S2……則第n個(gè)正方形與第n個(gè)等腰直角三角形的面積和Sn=____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y=kx+b上有一點(diǎn)P(-1,3),回答下列問題:
(1)關(guān)于x的方程kx+b=3的解是_______.
(2)關(guān)于x的不等式kx+b>3的解是________.
(3)關(guān)于x的不等式kx+b-3<0的解是______.
(4)求不等式-3x≥kx+b的解.
(5)求不等式(k+3)x+b>0的解.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com