如圖,AB是⊙O的直徑,C為AB延長線上一點,CD與⊙O相切,切點為E,AD⊥CD于點D,交⊙O于點F,若⊙O的半徑為2,設BC=x,DF=y,則y關于x的函數(shù)解析式為y=______.
連接OE,BF,
∵CD與圓O相切,∴OE⊥CD,
∴∠OEC=90°,又AD⊥DC,
∴∠D=∠OEC=90°,由∠C為公共角,
∴△COE△CAD,
OE
AD
=
CO
CA
,即
2
AD
=
x+2
x+4
,
∴AD=
2x+8
x+2
,
又∵AB為圓O的直徑,∴∠AFB=90°,
∴∠AFB=∠OEC=∠D=90°,∴BFCD,
∴∠ABF=∠C,
∴△ABF△OCE,
AF
OE
=
AB
OC
,即
AF
2
=
4
x+2

∴AF=
8
x+2
,
∴y=DF=AD-AF=
2x+8
x+2
-
8
x+2
=
2x
x+2

練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,點E是正方形ABCD的邊CD上一點,以A為圓心,AB為半徑的弧與BE交于點F,則∠EFD=______°.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,在△ABC中,∠C=90°,點O在AB上,且AC,BC分別與圓O相切于點M、N,若AO=15厘米,OB=20厘米,則圓O的面積為______平方厘米.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,已知BC是⊙O的直徑,AD切⊙O于A,若∠C=40°,則∠DAC=( 。
A.50°B.40°C.25°D.20°

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,在△ABC中,點O在AB邊上,以O為圓心的圓經過A,C兩點,交AB于點D,且2∠A+∠B=90°,
(1)求證:BC是⊙O的切線.
(2)若OA=6,且OD=BD,求AC的長.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知:如圖,在以點O為圓心的兩個同心圓中,大圓的半徑OA與小圓相交于點B,AC與小圓相切于點C,OC的延長線與大圓相交于點D,AC與BD相交于點E.
求證:(1)BD是小圓的切線;
(2)CE:AE=OC:OD.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

在平面直角坐標系中,直線y=
3
3
x-
3
與x軸、y軸分別交于A,B兩點.現(xiàn)有半徑為1的動圓P,且P的坐標為(n,0),若動圓P與直線AB交,則n的取值范圍是______.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,PA、PB是⊙O的切線,切點分別是A、B,若∠APB=60°,PA=4.則⊙O的半徑是______.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知:如圖,BC是⊙O的切線,C是切點,AC是⊙O的弦,AO的延長線交BC于點B,設⊙O的半徑為
5
,∠ACB=120°.求AB的長.

查看答案和解析>>

同步練習冊答案