【題目】在邊長為1的小正方形組成的正方形網(wǎng)格中建立如圖片所示的平面直角坐標(biāo)系,已知格點三角形ABC(三角形的三個頂點都在小正方形上)
(1)畫出△ABC關(guān)于直線l:x=﹣1的對稱三角形△A1B1C1;并寫出A1、B1、C1的坐標(biāo).
(2)在直線x=﹣l上找一點D,使BD+CD最小,滿足條件的D點為 .
提示:直線x=﹣l是過點(﹣1,0)且垂直于x軸的直線.
【答案】
(1)解:所作圖形如圖所示:
A1(3,1),B1(0,0),C1(1,3)
(2)(﹣1,1)
【解析】解:(1)所作圖形如圖所示:
A1(3,1),B1(0,0),C1(1,3);(2)作出點B關(guān)于x=﹣1對稱的點B1 ,
連接CB1 , 與x=﹣1的交點即為點D,
此時BD+CD最小,
點D坐標(biāo)為(﹣1,1).
故答案為:(﹣1,1).
(1)分別作出點A、B、C關(guān)于直線l:x=﹣1的對稱的點,然后順次連接,并寫出A1、B1、C1的坐標(biāo);(2)作出點B關(guān)于x=﹣1對稱的點B1 , 連接CB1 , 與x=﹣1的交點即為點D,此時BD+CD最小,寫出點D的坐標(biāo).
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點D為⊙O上的一點,點C在直徑BA的延長線上,并且∠CDA=∠CBD.
(1)求證:CD是⊙O的切線;
(2)過點B作O的切線,交CD的延長線于點E,若BC=12,tan∠CDA=,求BE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知直線y=x+4與兩坐標(biāo)軸分別交于A、B兩點,⊙C的圓心坐標(biāo)為 (2,O),半徑為2,若D是⊙C上的一個動點,線段DA與y軸交于點E,則△ABE面積的最小值和最大值分別是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,△ABC與△DEF都是等腰直角三角形,∠ACB=∠EDF=90°,且點D在AB邊上,AB、EF的中點均為O,連結(jié)BF、CD、CO,顯然點C、F、O在同一條直線上,可以證明△BOF≌△COD,則BF=CD.
解決問題
(1)將圖①中的Rt△DEF繞點O旋轉(zhuǎn)得到圖②,猜想此時線段BF與CD的數(shù)量關(guān)系,并證明你的結(jié)論;
(2)如圖③,若△ABC與△DEF都是等邊三角形,AB、EF的中點均為O,上述(1)中的結(jié)論仍然成立嗎?如果成立,請說明理由;如不成立,請求出BF與CD之間的數(shù)量關(guān)系;
(3)如圖④,若△ABC與△DEF都是等腰三角形,AB、EF的中點均為0,且頂角∠ACB=∠EDF=α,請直接寫出的值(用含α的式子表示出來)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,△ABC中,∠ABC=90°,BD是∠ABC的平分線,DE⊥AB于點E , DF⊥BC于點F . 求證:四邊形DEBF是正方形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在“愛我永州”中學(xué)生演講比賽中,五位評委分別給甲、乙兩位選手的評分如下:
甲:8、7、9、8、8
乙:7、9、6、9、9
則下列說法中錯誤的是( )
A.甲、乙得分的平均數(shù)都是8
B.甲得分的眾數(shù)是8,乙得分的眾數(shù)是9
C.甲得分的中位數(shù)是9,乙得分的中位數(shù)是6
D.甲得分的方差比乙得分的方差小
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com