精英家教網(wǎng)如圖,一次函數(shù)y1=k1x+b與反比例函數(shù)y2=
k2
x
 (x<0)
的圖象相交于A,B兩點,且與坐標軸的交點為(-6,0),(0,6),點B的橫坐標為-4.
(1)試確定反比例函數(shù)的解析式;
(2)求AOB的面積;
(3)直接寫出不等式k1x+b>
k2
x
的解.
分析:(1)根據(jù)待定系數(shù)法就可以求出函數(shù)的解析式;
(2)求△AOB的面積就是求A,B兩點的坐標,將一次函數(shù)與反比例函數(shù)的解析式組成方程即可求得;
(3)觀察圖象即可求得一次函數(shù)比反比例函數(shù)大的區(qū)間.
解答:解:(1)設(shè)一次函數(shù)解析式為y=kx+b,
∵一次函數(shù)與坐標軸的交點為(-6,0),(0,6),
-6k+b=0
b=6

k=1
b=6
,
∴一次函數(shù)關(guān)系式為:y=x+6,
∴B(-4,2),
∴反比例函數(shù)關(guān)系式為:y=
-8
x
;

(2)∵點A與點B是反比例函數(shù)與一次函數(shù)的交點,
∴可得:x+6=-
8
x
,
解得:x=-2或x=-4,
∴A(-2,4),
∴S△AOB=6×6÷2-6×2=6;

(3)觀察圖象,易知k1x+b>
k2
x
的解集為:-4<x<-2.
點評:此題主要考查了待定系數(shù)法求反比例函數(shù)與一次函數(shù)的解析式.此題綜合性較強,注意數(shù)形結(jié)合思想的應(yīng)用.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,一次函數(shù)y1=kx+b的圖象與反比例函數(shù)y2=
m
x
的圖象交于A、B兩點,點A、B的橫坐標分別為-2、1.當y1>y2時,自變量x的取值范圍是( 。
A、-2<x<1
B、0<x<1
C、x<-2和0<x<1
D、-2<x<1和x>1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知:如圖,一次函數(shù)y1=kx+b(k≠0)的圖象與反比例函數(shù)y2=
mx
 
(m≠0)
的圖象交于二、四象限內(nèi)的A、B兩點,過A作AC⊥x軸于點C,連接OA、OB、BC.已知OC=4,tan∠OAC=2,點B的縱坐標為-6.
(1)求反比例函數(shù)和直線AB的解析式;
(2)求四邊形OACB的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,一次函數(shù)y1=kx+b的圖象與反比例函數(shù)y2=
mx
的圖象相交于A、B兩點,試利用圖中條件,求y1和y2的解析式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,一次函數(shù)y1=kx+1(k≠0)與反比例函數(shù)y2=
mx
(m≠0)的圖象有公共點A(1,2).直線l⊥x軸于點N(3,0),與一次函數(shù)和反比例函數(shù)的圖象分別交于點B,C.
(1)求一次函數(shù)與反比例函數(shù)的解析式;
(2)求△ABC的面積?
(3)當y1>y2時,請直接寫出x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,一次函數(shù)y1=kx+b與反比例函數(shù)y2=-
6x
交于點A(m,6)、B(3,n).
(1)求一次函數(shù)的關(guān)系式;
(2)求△AOB的面積;
(3)直接寫出y1>y2時x的取值范圍.

查看答案和解析>>

同步練習冊答案