【題目】在Rt△ABC中,∠ACB=90°,∠A=30°,點(diǎn)D是AB的中點(diǎn),DE⊥BC,垂足為點(diǎn)E,連接CD.
(1)如圖1,DE與BC的數(shù)量關(guān)系是 ;
(2)如圖2,若P是線段CB上一動(dòng)點(diǎn)(點(diǎn)P不與點(diǎn)B、C重合),連接DP,將線段DP繞點(diǎn)D逆時(shí)針旋轉(zhuǎn)60°,得到線段DF,連接BF,請(qǐng)猜想DE、BF、BP三者之間的數(shù)量關(guān)系,并證明你的結(jié)論;
(3)若點(diǎn)P是線段CB延長(zhǎng)線上一動(dòng)點(diǎn),按照(2)中的作法,請(qǐng)?jiān)趫D3中補(bǔ)全圖形,并直接寫出DE、BF、BP三者之間的數(shù)量關(guān)系.
【答案】(1)DE=BC(2)BF+BP=DE.理由見解析(3) ,BF﹣BP=DE
【解析】
試題分析:(1)由∠ACB=90°,∠A=30°得到∠B=60°,根據(jù)直角三角形斜邊上中線性質(zhì)得到DB=DC,則可判斷△DCB為等邊三角形,由于DE⊥BC,DE=BC;
(2)根據(jù)旋轉(zhuǎn)的性質(zhì)得到∠PDF=60°,DP=DF,易得∠CDP=∠BDF,則可根據(jù)“SAS”可判斷△DCP≌△DBF,則CP=BF,利用CP=BC﹣BP,DE=BC可得到BF+BP=DE;
(3)與(2)的證明方法一樣得到△DCP≌△DBF得到CP=BF,而CP=BC+BP,則BF﹣BP=BC,所以BF﹣BP=DE.
解:(1)∵∠ACB=90°,∠A=30°,
∴∠B=60°,
∵點(diǎn)D是AB的中點(diǎn),
∴DB=DC,
∴△DCB為等邊三角形,
∵DE⊥BC,
∴DE=BC;
故答案為DE=BC.
(2)BF+BP=DE.理由如下:
∵線段DP繞點(diǎn)D逆時(shí)針旋轉(zhuǎn)60°,得到線段DF,
∴∠PDF=60°,DP=DF,
而∠CDB=60°,
∴∠CDB﹣∠PDB=∠PDF﹣∠PDB,
∴∠CDP=∠BDF,
在△DCP和△DBF中
,
∴△DCP≌△DBF(SAS),
∴CP=BF,
而CP=BC﹣BP,
∴BF+BP=BC,
∵DE=BC,
∴BC=DE,
∴BF+BP=DE;
(3)如圖,
與(2)一樣可證明△DCP≌△DBF,
∴CP=BF,
而CP=BC+BP,
∴BF﹣BP=BC,
∴BF﹣BP=DE.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】輪船從B處以每小時(shí)50海里的速度沿南偏東30°方向勻速航行,在B處觀測(cè)燈塔A位于南偏東75°方向上,輪船航行半小時(shí)到達(dá)C處,在C處觀測(cè)燈塔A位于北偏東60°方向上,則C處與燈塔A的距離是( )海里.
A.25 B.25 C.50 D.25
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是一副眼鏡鏡片下半部分輪廓對(duì)應(yīng)的兩條拋物線關(guān)于y軸對(duì)稱.AB∥x軸,AB=4cm,最低點(diǎn)C在x軸上,高CH=1cm,BD=2cm.則右輪廓線DFE所在拋物線的函數(shù)解析式為( )
A.y=(x+3)2
B.y=(x+3)2
C.y=(x﹣3)2
D.y=(x﹣3)2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若∠α與∠β的兩邊分別平行,且∠α=(2x+10)°,∠β=(3x﹣20)°,則∠α的度數(shù)為( )
A. 70° B. 86° C. 70°或86° D. 30°或38°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一自助夏令營活動(dòng)中,小明同學(xué)從營地A出發(fā),要到A地的北偏東60°方向的C處,他先沿正東方向走了200m到達(dá)B地,再沿北偏東30°方向走,恰能到達(dá)目的地C(如圖),那么,由此可知,B、C兩地相距 m.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2016年濟(jì)寧市常住人口約為820萬人,與2010年第六次人口普查的808.19萬人略有提升,820萬用科學(xué)記數(shù)法表示為8.2×10n,則n= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)P、Q分別是邊長(zhǎng)為4cm的等邊△ABC的邊AB、BC上的動(dòng)點(diǎn)(其中P、Q不與端點(diǎn)重合),點(diǎn)P從頂點(diǎn)A,點(diǎn)Q從頂點(diǎn)B同時(shí)出發(fā),且它們的速度都為1cm/s,連接AQ、CP交于點(diǎn)M,則在P、Q運(yùn)動(dòng)的過程中,下列結(jié)論:(1)BP=CM;(2)△ABQ≌△CAP;(3)∠CMQ的度數(shù)始終等于60°;(4)當(dāng)?shù)?/span>秒或第秒時(shí),△PBQ為直角三角形.其中正確的結(jié)論有( )
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com