【題目】如圖,拋物線頂點A的坐標為(1,4),拋物線與x軸相交于B、C兩點,與y軸交于點E0,3).

1)求拋物線的表達式;

2)已知點F0,-3),在拋物線的對稱軸上是否存在一點P,使得EP+FP最小,如果存在,求出點P的坐標;如果不存在,請說明理由.

【答案】1y=x2+2x+3;(2)存在,P(1,0),理由見解析;

【解析】

1)根據(jù)頂點式可求得拋物線的表達式;
2)根據(jù)軸對稱的最短路徑問題,作E關(guān)于對稱軸的對稱點E',連接E'F交對稱軸于P,此時EP+FP的值最小,先求E'F的解析式,它與對稱軸的交點就是所求的點P

1)設(shè)拋物線的表達式為:y=a(x1)2+4,

(0,3)代入得:3=a(01)2+4,

解得:a=1

∴拋物線的表達式為:y=(x1)2+4=x2+2x+3;

2)存在,

E關(guān)于對稱軸的對稱點E,連接EF交對稱軸于P,此時EP+FP的值最小,

E(0,3)

E′(2,3),

易得EF的解析式為:y=3x3,

x=1時,y=3×13=0,

P(1,0)

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,點為坐標原點,拋物線軸于,兩點,交軸于點,直線經(jīng)過,兩點.

1)求拋物線的解析式;

2)過點作直線軸交拋物線于另一點,點是直線下方拋物線上的一個動點,且在拋物線對稱軸的右側(cè),過點軸于點于點,交于點,連接,過點于點,設(shè)點的橫坐標為,線段的長為,求之間的函數(shù)解析式(不要求寫出自變量的取值范圍);

3)在(2)的條件下,連接,過點于點(點在線段上),于點,連接于點,當時,求線段的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校為了了解學生對中國民族樂器的喜愛情況,隨機抽取了本校的部分學生進行調(diào)查(每名學生選擇并且只能選擇一種喜愛的樂器),現(xiàn)將收集到的數(shù)據(jù)繪制成如下兩幅不完整的統(tǒng)計圖.

1)這次共抽取 學生調(diào)查,扇形統(tǒng)計圖中的x ;

2)請補全統(tǒng)計圖;

3)在扇形統(tǒng)計圖中“揚琴”所對扇形的圓心角是多少度;

4)若該校有3000名學生,請你估計該校喜愛“二胡”的學生約有多少名.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線lyx+1y軸交于點A,與雙曲線x0)交于點B2,a).

1)求a,k的值.

2)點P是直線l上方的雙曲線上一點,過點P作平行于y軸的直線,交直線l于點C,過點A作平行于x軸的直線,交直線PC于點D,設(shè)點P的橫坐標為m

①若m,試判斷線段CPCD的數(shù)量關(guān)系,并說明理由;②若CPCD,請結(jié)合函數(shù)圖象,直接寫出m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】問題呈現(xiàn)

如圖1,在邊長為1的正方形網(wǎng)格中,連接格點、相交于點,求的值.

方法歸納

求一個銳角的三角函數(shù)值,我們往往需要找出(或構(gòu)造出)一個直角三角形.觀察發(fā)現(xiàn)問題中不在直角三角形中,我們常常利用網(wǎng)格畫平行線等方法解決此類問題.比如連接格點、,可得,則,連接,那么就變換到中.

問題解決

(1)直接寫出圖1的值為_________;

(2)如圖2,在邊長為1的正方形網(wǎng)格中,相交于點,求的值;

思維拓展

(3)如圖3,,,點上,且,延長,使,連接的延長線于點,用上述方法構(gòu)造網(wǎng)格求的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某商店計劃一次性購進甲、乙兩種商品共件,甲、乙兩種商品的進價和售價如下表所示:

進價(元/件)

100

80

售價(元/件)

150

120

設(shè)購進甲種商品的數(shù)量為件.

1)設(shè)進貨成本為元,求之間的函數(shù)解析式;若購進甲種商品的數(shù)量不少于件,則最低進貨成本是多少元?

2)若除了進貨成本,還要支付運費和銷售員工工資共元,為盡快回籠資金,該商店決定對甲種商品進行降價銷售,每件甲種商品降價,乙種商品售價不變,設(shè)銷售完甲、乙兩種商品獲得的總利潤為元.

①每件甲種商品的利潤是 元(用含的代數(shù)式表示)

②求關(guān)于的函數(shù)解析式

③當時,請你根據(jù)的取值范圍,說明該商店購進甲種商品多少件時,獲得的總利潤最大.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】將一副三角尺按圖1擺放,等腰直角三角尺的直角邊DF恰好垂直平分AB,與AC相交于點G,

(1)求GC的長;

(2)如圖2,將△DEF繞點D順時針旋轉(zhuǎn),使直角邊DF經(jīng)過點C,另一直角邊DE與AC相交于點H,分別過H、C作AB的垂線,垂足分別為M、N,通過觀察,猜想MD與ND的數(shù)量關(guān)系,并驗證你的猜想.

(3)在(2)的條件下,將△DEF沿DB方向平移得到△D′E′F′,當D′E′恰好經(jīng)過(1)中的點G時,請直接寫出DD′的長度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在RtABC中,∠C90°,ACBC,點OAB上,經(jīng)過點AOBC相切于點D,交AB于點E,若CD,則圖中陰影部分面積為( 。

A.4B.2C.2πD.1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,把與軸交點相同的二次函數(shù)圖像稱為“共根拋物線”.如圖,拋物線的頂點為,交軸于點(點在點左側(cè)),交軸于點.拋物線是“共根拋物線”,其頂點為

1)若拋物線經(jīng)過點,求對應(yīng)的函數(shù)表達式;

2)當的值最大時,求點的坐標;

3)設(shè)點是拋物線上的一個動點,且位于其對稱軸的右側(cè).若相似,求其“共根拋物線”的頂點的坐標.

查看答案和解析>>

同步練習冊答案