(2004•南通)已知一個(gè)矩形的長(zhǎng)為3cm,寬為2cm,它的對(duì)角線長(zhǎng)為    cm(結(jié)果保留兩個(gè)有效數(shù)字).
【答案】分析:根據(jù)矩形的性質(zhì),采用勾股定理進(jìn)行求解.
解答:解:根據(jù)勾股定理,得對(duì)角線的長(zhǎng)==≈3.6.
點(diǎn)評(píng):熟練運(yùn)用勾股定理,最后結(jié)果進(jìn)行按要求保留有效數(shù)字.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:2004年全國(guó)中考數(shù)學(xué)試題匯編《圓》(13)(解析版) 題型:解答題

(2004•南通)已知,如圖,直角坐標(biāo)系內(nèi)的矩形ABCD,頂點(diǎn)A的坐標(biāo)為(0,3),BC=2AB,P為AD邊上一動(dòng)點(diǎn)(與點(diǎn)A、D不重合),以點(diǎn)P為圓心作⊙P與對(duì)角線AC相切于點(diǎn)F,過(guò)P、F作直線L,交BC邊于點(diǎn)E,當(dāng)點(diǎn)P運(yùn)動(dòng)到點(diǎn)P1位置時(shí),直線L恰好經(jīng)過(guò)點(diǎn)B,此時(shí)直線的解析式是y=2x+1.
(1)求BC、AP1的長(zhǎng);
(2)設(shè)AP=m,梯形PECD的面積為S,求S與m之間的函數(shù)關(guān)系式,寫出自變量m的取值范圍;
(3)以點(diǎn)E為圓心作⊙E與x軸相切.
①探究并猜想:⊙P和⊙E有哪幾種位置關(guān)系,并求出AP相應(yīng)的取值范圍;
②當(dāng)直線L把矩形ABCD分成兩部分的面積之比值為3:5時(shí),則⊙P和⊙E的位置關(guān)系如何并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2004年全國(guó)中考數(shù)學(xué)試題匯編《反比例函數(shù)》(03)(解析版) 題型:解答題

(2004•南通)已知,二氧化碳的密度ρ(kg/m3)與體積V(m3)的函數(shù)關(guān)系式是ρ=
(1)求當(dāng)V=5m3時(shí)二氧化碳的密度ρ;
(2)請(qǐng)寫出二氧化碳的密度ρ隨V的增大(或減。┒兓那闆r.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2004年江蘇省南通市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2004•南通)已知,如圖,直角坐標(biāo)系內(nèi)的矩形ABCD,頂點(diǎn)A的坐標(biāo)為(0,3),BC=2AB,P為AD邊上一動(dòng)點(diǎn)(與點(diǎn)A、D不重合),以點(diǎn)P為圓心作⊙P與對(duì)角線AC相切于點(diǎn)F,過(guò)P、F作直線L,交BC邊于點(diǎn)E,當(dāng)點(diǎn)P運(yùn)動(dòng)到點(diǎn)P1位置時(shí),直線L恰好經(jīng)過(guò)點(diǎn)B,此時(shí)直線的解析式是y=2x+1.
(1)求BC、AP1的長(zhǎng);
(2)設(shè)AP=m,梯形PECD的面積為S,求S與m之間的函數(shù)關(guān)系式,寫出自變量m的取值范圍;
(3)以點(diǎn)E為圓心作⊙E與x軸相切.
①探究并猜想:⊙P和⊙E有哪幾種位置關(guān)系,并求出AP相應(yīng)的取值范圍;
②當(dāng)直線L把矩形ABCD分成兩部分的面積之比值為3:5時(shí),則⊙P和⊙E的位置關(guān)系如何并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2004年江蘇省南通市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2004•南通)已知,二氧化碳的密度ρ(kg/m3)與體積V(m3)的函數(shù)關(guān)系式是ρ=
(1)求當(dāng)V=5m3時(shí)二氧化碳的密度ρ;
(2)請(qǐng)寫出二氧化碳的密度ρ隨V的增大(或減。┒兓那闆r.

查看答案和解析>>

同步練習(xí)冊(cè)答案