【題目】如圖,大拇指與小拇指盡量張開時,兩指尖的距離稱為指距.人體構造學的研究成果表明,一般情況下人的指距d和身高h成如下所示的關系.
指距d(cm) | 20 | 21 | 22 | 23 |
身高h(cm) | 160 | 169 | 178 | 187 |
(1)直接寫出身高h與指距d的函數(shù)關系式;
(2)姚明的身高是226厘米,可預測他的指距約為多少?(精確到0.1厘米)
科目:初中數(shù)學 來源: 題型:
【題目】在一次社會調查活動中,小李收集到某“健步走運動”團隊20名成員一天行走的步數(shù),記錄如下:
5640 | 6430 | 6520 | 6798 | 7325 |
8430 | 8215 | 7453 | 7446 | 6754 |
7638 | 6834 | 7326 | 6830 | 8648 |
8753 | 9450 | 9865 | 7290 | 7850 |
對這20個數(shù)據(jù)按組距1000進行分組,并統(tǒng)計整理.
(1)請完成下面頻數(shù)分布統(tǒng)計表;
組別 | 步數(shù)分組 | 頻數(shù) |
A | 5500≤x<6500 | |
B | 6500≤x<7500 | |
C | 7500≤x<8500 | |
D | 8500≤x<9500 | |
E | 9500≤x<10500 |
(2)在上圖中請畫出頻數(shù)分布直方圖;
(3)若該團隊共有200人,請估計其中一天行走步數(shù)少于8500步的人數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB = 6cm,∠CAB = 25°,P是線段AB上一動點,過點P作PM⊥AB交射線AC于點M,連接MB,過點P作PN⊥MB于點N.設A,P兩點間的距離為xcm,P,N兩點間的距離為ycm.(當點P與點A或點B重合時,y的值均為0)小海根據(jù)學習函數(shù)的經驗,對函數(shù)y隨自變量x的變化而變化的規(guī)律進行了探究.
下面是小海的探究過程,請補充完整:
(1)通過取點、畫圖、測量,得到了x與y的幾組值,如下表:
x/cm | 0.00 | 0.60 | 1.00 | 1.51 | 2.00 | 2.75 | 3.00 | 3.50 | 4.00 | 4.29 | 4.90 | 5.50 | 6.00 |
y/cm | 0.00 | 0.29 | 0.47 | 0.70 | 1.20 | 1.27 | 1.37 | 1.36 | 1.30 | <>1.00 | 0.49 | 0.00 |
(說明:補全表格時相關數(shù)值保留兩位小數(shù))
(2)建立平面直角坐標系,描出以補全后的表中各對對應值為坐標的點,畫出該函數(shù)的圖象;
(3)結合畫出的函數(shù)圖象,解決問題:當y=0.5時,與之對應的值的個數(shù)是 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校為了更好的開展“學校特色體育教育”,從全校八年級的各班分別隨機抽取了5名男生和5名女生,組成了一個容量為60的樣本,進行各項體育項目的測試,了解他們的身體素質情況.下表是整理樣本數(shù)據(jù),得到的關于每個個體的測試成績的部分統(tǒng)計表、圖:某校60名學生體育測試成績頻數(shù)分布表
成績 | 劃記 | 頻數(shù) | 百分比 |
優(yōu)秀 | 正正正 | a | 30% |
良好 | 正正正正正正 | 30 | b |
合格 | 正 | 9 | 15% |
不合格 | 3 | 5% | |
合計 | 60 | 60 | 100% |
(說明:40﹣﹣﹣55分為不合格,55﹣﹣﹣70分為合格,70﹣﹣﹣85分為良好,85﹣﹣﹣100分為優(yōu)秀)請根據(jù)以上信息,解答下列問題:
(1)表中的a=_____,b=_____;
(2)請根據(jù)頻數(shù)分布表,畫出相應的頻數(shù)分布直方圖;
(3)如果該校八年級共有150名學生,根據(jù)以上數(shù)據(jù),估計該校八年級學生身體素質良好及以上的人數(shù)為_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】端午節(jié)期間,揚州某商場為了吸引顧客,開展有獎促銷活動,設立了一個可以自由轉動的轉盤,轉盤被分成4個面積相等的扇形,四個扇形區(qū)域里分別標有“10元”、“20元”、“30元”、“40元”的字樣(如圖).規(guī)定:同一日內,顧客在本商場每消費滿100元就可以轉動轉盤一次,商場根據(jù)轉盤指針指向區(qū)域所標金額返還相應數(shù)額的購物券,某顧客當天消費240元,轉了兩次轉盤.
(1)該顧客最少可得 元購物券,最多可得 元購物券;
(2)請用畫樹狀圖或列表的方法,求該顧客所獲購物券金額不低于50元的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在等邊△ABC中,D是邊AC上一點,連接BD,將△BCD繞點B逆時針旋轉60°,得到△BAE,連接ED,若BC=5,BD=4,則以下四個結論中: ①△BDE是等邊三角形; ②AE∥BC; ③△ADE的周長是9; ④∠ADE=∠BDC.其中正確的序號是( 。
A.②③④B.①②④C.①②③D.①③④
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】閱讀并理解下面的證明過程,并在每步后的括號內填寫該步推理的依據(jù).如圖,已知.求證:.
證明:在△ABC和△DCB中,
AB=DC(已知)
AC=DB(已知)
= ( )
∴△ABC≌△DCB( )
∴∠ABC=∠DCB,∠ACB=∠DBC( )
∴∠ABC-∠DBC=∠DCB-∠ACB即∠1=∠2
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】對某個函數(shù)給定如下定義:若存在實數(shù)M>0,對于任意的函數(shù)值y,都滿足|y|≤M,則稱這個函數(shù)是有界函數(shù).在所有滿足條件的M中,其中最小值稱為這個函數(shù)的邊界值.現(xiàn)將有界函數(shù)y=2+1(0xm,1≤m≤2)的圖象向下平移m個單位,得到的函數(shù)邊界值是t,且≤t≤2,則m的取值范圍是( )
A. 1≤m≤ B. ≤m≤ C. ≤m≤ D. ≤m≤2
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC中,∠BAC=90°,AB=3,AC=4,點D是BC的中點,將△ABD沿AD翻折得到△AED,連CE
(1)求證:AD=ED
(2)連接BE,猜想△BEC的形狀,并說明理由
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com