【題目】已知:如圖,△ABC和△DBE均為等腰直角三角形.
(1)求證:AD=CE;
(2)求證:AD和CE垂直.
【答案】
(1)證明:∵△ABC和△DBE是等腰直角三角形,
∴AB=BC,BD=BE,∠ABC=∠DBE=90°,
∴∠ABC﹣∠DBC=∠DBE﹣∠DBC,
即∠ABD=CBE,
在△ABD和△CBE中,
,
∴△ABD≌△CBE(SAS),
∴AD=CE
(2)證明:延長(zhǎng)AD分別交BC和CE于G和F,如圖所示:
∵△ABD≌△CBE,
∴∠BAD=∠BCE,
∵∠BAD+∠ABC∠∠BGA=∠BCE+∠AFC+∠CGF=180°,
又∵∠BGA=∠CGF,
∵∠BAD+∠ABC+∠BGA=∠BCE+∠AFC+∠CGF=180°,
∴∠AFC=∠ABC=90°,
∴AD⊥CE.
【解析】(1)由等腰直角三角形的性質(zhì)得出AB=BC,BD=BE,∠ABC=∠DBE=90°,得出∠ABD=CBE,證出△ABD≌△CBE(SAS),得出AD=CE;(2)△ABD≌△CBE得出∠BAD=∠BCE,再由∠BAD+∠ABC∠∠BGA=∠BCE+∠AFC+∠CGF=180°,得出∠AFC=∠ABC=90°,證出結(jié)論.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解等腰直角三角形的相關(guān)知識(shí),掌握等腰直角三角形是兩條直角邊相等的直角三角形;等腰直角三角形的兩個(gè)底角相等且等于45°.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】有理數(shù)的加法法則:同號(hào)相加時(shí),取 的符號(hào),并把它們的絕對(duì)值相加.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義:數(shù)學(xué)活動(dòng)課上,樂(lè)老師給出如下定義:有一組對(duì)邊相等而另一組對(duì)邊不相等的凸四邊形叫做對(duì)等四邊形.
理解:
(1)如圖1,已知A、B、C在格點(diǎn)(小正方形的頂點(diǎn))上,請(qǐng)?jiān)诜礁駡D中畫出以格點(diǎn)為頂點(diǎn),AB、BC為邊的兩個(gè)對(duì)等四邊形ABCD;
(2)如圖2,在圓內(nèi)接四邊形ABCD中,AB是⊙O的直徑,AC=BD.求證:四邊形ABCD是對(duì)等四邊形;
(3)如圖3,在Rt△PBC中,∠PCB=90°,BC=11,tan∠PBC=,點(diǎn)A在BP邊上,且AB=13.用圓規(guī)在PC上找到符合條件的點(diǎn)D,使四邊形ABCD為對(duì)等四邊形,并求出CD的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】△ABC在平面直角坐標(biāo)系中的位置如圖所示.A、B、C三點(diǎn)在格點(diǎn)上.
(1)作出△ABC關(guān)于x軸對(duì)稱的△A1B1C1 , 并寫出點(diǎn)C1的坐標(biāo);
(2)作出△ABC關(guān)于y對(duì)稱的△A2B2C2 , 并寫出點(diǎn)C2的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】美國(guó)NBA籃球職業(yè)聯(lián)賽冠軍隊(duì)某投球手罰球時(shí),“三投都不中”這一事件是( )
A.不可能事件B.必然事件C.隨機(jī)事件D.無(wú)法確定
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知正比例函數(shù)y= x的圖象與一次函數(shù)y=kx﹣3的圖象相交于點(diǎn)(2,a).
(1)求a的值.
(2)求一次函數(shù)的表達(dá)式.
(3)在同一坐標(biāo)系中,畫出這兩個(gè)函數(shù)的圖象.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)C在線段AB上,AC=6cm,MB=10cm,點(diǎn)M、N分別為AC、BC的中點(diǎn).
(1)求線段BC的長(zhǎng);
(2)求線段MN的長(zhǎng);
(3)若C在線段AB延長(zhǎng)線上,且滿足AC﹣BC=b cm,M,N分別是線段AC,BC的中點(diǎn),你能猜想MN的長(zhǎng)度嗎?請(qǐng)寫出你的結(jié)論(不需要說(shuō)明理由).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com