【題目】已知,,直線MN經(jīng)過點(diǎn)A.
(1)作,垂足為D,連結(jié)CD,在圖①中補(bǔ)全圖形,猜想的度數(shù)并證明;
(2)在直線MN繞點(diǎn)A旋轉(zhuǎn)的過程中,當(dāng), 時(shí),直接寫出DC的長.
【答案】(1)=,理由見解析;(2)或
【解析】
(1)如圖作,垂足為D,連結(jié)CD,連接AB,因?yàn)?/span>,所以A,B,C,D四點(diǎn)共圓,再根據(jù)同弦所對的圓周角相等,即可完成證明;
(2) 過D點(diǎn)作AC延長線的垂線,垂足為E;對MN與CB或MN與CB的延長線是否有交點(diǎn)進(jìn)行分類討論.然后運(yùn)用四點(diǎn)共圓,圓周角定理以及勾股定理得知識(shí)解答即可.
解:(1)=,理由如下:
如圖作,垂足為D,連結(jié)CD,連接AB,
∵
∴A,B,C,D四點(diǎn)共圓,
又∵,都是弦AC所對的圓周角
∴=
(2)①如圖:過D點(diǎn)作AC延長線的垂線,垂足為E
∵A,B,C,D四點(diǎn)共圓,且∠BAD,∠BCD都是弦BD所對的圓周角
∴∠BAD=∠BCD=30°
又∵BD⊥MN,BD=
∴AB=2
在等腰直角三角形中,有勾股定理可得:AC=BC=2
在直角三角形ADB中,由勾股定理可得:AD=
又∵DE⊥AE
∴BC∥ED
∴∠CDE=∠BCD=30°
∴CD=2CE
設(shè)CE=x,CD=2x,由勾股定理得:ED=x
在直角三角形AED中,AE=2+x,ED=x,AD=
由勾股定理得:
解得x= 或(舍去)
所以CD=2CE=2x=
②如圖:同理可得:CD=
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,已知二次函數(shù)y=ax2+bx+c的圖象與x軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C,對稱軸為直線x=1.直線y=﹣x+c與拋物線y=ax2+bx+c交于C、D兩點(diǎn),則下列結(jié)論:
①abc>0
②a﹣b+c<0;
③2a+b+c>0;
④x(ax+b)≤a+b;
其中正確的有_____
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】根據(jù)農(nóng)業(yè)部提出“大力發(fā)展農(nóng)村產(chǎn)業(yè),實(shí)現(xiàn)鄉(xiāng)村全面振興”的方針,我市精確扶貧,指導(dǎo)某縣大力發(fā)展大五星枇杷種植,去年、今年枇杷產(chǎn)量連續(xù)獲得大豐收,該縣枇杷銷售采用線下銷售和線上銷售兩種模式.
(1)今年該縣種植專業(yè)戶大五星枇杷產(chǎn)量為4500千克,全部售出,其中線上銷售量不超過線下銷售的4倍,求該種植專業(yè)戶線下銷售量至少多少千克?
(2)該種植專業(yè)戶去年大五星枇杷線下銷售均價(jià)為10元/千克,銷售量為900千克,線上銷售均價(jià)為8元/千克,銷售量為1800千克,今年線下銷售均價(jià)上漲,但銷售量下降了,線上銷售均價(jià)上漲了,銷量與去年持平,今年大五星枇杷的銷售總額比去年銷售總額減少了,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,O為正方形ABCD對角線上一點(diǎn),以點(diǎn)O為圓心,OA長為半徑的
⊙ O與BC相切于點(diǎn)E.
(1)求證:CD是⊙ O的切線;
(2)若正方形ABCD的邊長為10,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面坐標(biāo)系xOy中,點(diǎn)A的坐標(biāo)為(1,0),點(diǎn)P的橫坐標(biāo)為2,將點(diǎn)A繞點(diǎn)P旋轉(zhuǎn),使它的對應(yīng)點(diǎn)B恰好落在x軸上(不與A點(diǎn)重合);再將點(diǎn)B繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°得到點(diǎn)C.
(1)直接寫出點(diǎn)B和點(diǎn)C的坐標(biāo);
(2)求經(jīng)過A,B,C三點(diǎn)的拋物線的表達(dá)式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知A,B,C,D是⊙O上的四個(gè)點(diǎn).
(1)如圖1,若∠ADC=∠BCD=90°,AD=CD,求證:AC⊥BD;
(2)如圖2,若AC⊥BD.垂足為E,AB=4,DC=6,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一張矩形紙片中,,,現(xiàn)將這張紙片按下列圖示方法折疊,請解決下列問題:
(1)如圖①,折痕為,點(diǎn)的對應(yīng)點(diǎn)在上,求證:四邊形是正方形;
(2)如圖②,、分別為、的中點(diǎn),把矩形紙片沿著剪開,變成兩張矩形紙片,將兩張紙片任意疊合后(如圖③),判斷重疊四邊形的形狀,并證明;
(3)在(2)中,重疊四邊形的周長是否存在最大值或最小值?若存在,請求出最大值或最小值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知⊙O半徑為1,若點(diǎn)P在⊙O外且⊙O上存在點(diǎn)A、B使得∠APB=60°,則稱點(diǎn)P是⊙O的領(lǐng)域點(diǎn).
(1)對以下情況,用三角板或量角器嘗試畫圖,并判斷點(diǎn)P是否是⊙O的領(lǐng)域點(diǎn)(在橫線上填“是”或“不是”).
①當(dāng)OP=1.2時(shí), 點(diǎn)P ⊙O的領(lǐng)域點(diǎn) | ②當(dāng)OP=2時(shí), 點(diǎn)P ⊙O的領(lǐng)域點(diǎn) | ③當(dāng)OP=3時(shí), 點(diǎn)P ⊙O的領(lǐng)域點(diǎn) |
(2)若點(diǎn)P是⊙O的領(lǐng)域點(diǎn),則OP的取值范圍是 ;
(3)如圖,以圓心O為坐標(biāo)原點(diǎn)建立平面直角坐標(biāo)系xOy,設(shè)直線y=﹣x+b(b>0)與x軸、y軸分別相交于點(diǎn)M、N.
①若線段MN上有且只有一個(gè)點(diǎn)是⊙O的領(lǐng)域點(diǎn),求b的值;
②若線段MN上存在⊙O的領(lǐng)域點(diǎn),求b的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,是正內(nèi)一點(diǎn),,,,將線段以點(diǎn)為旋轉(zhuǎn)中心逆時(shí)針旋轉(zhuǎn)得到線段,下列結(jié)論:①可以由繞點(diǎn)逆時(shí)針旋轉(zhuǎn)得到;②點(diǎn)與的距離為6;③;④;⑤. 其中正確的結(jié)論是______(填序號(hào)).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com