【題目】在購買某場足球賽門票時,設(shè)購買門票數(shù)為x(張),總費用為y(元).現(xiàn)有兩種購買方案:
方案一:若單位贊助廣告費10000元,則該單位所購門票的價格為每張60元;
(總費用=廣告贊助費+門票費)
方案二:購買門票方式如圖所示.
解答下列問題:
(1)方案一中,y與x的函數(shù)關(guān)系式為 ;
方案二中,當(dāng)0≤x≤100時,y與x的函數(shù)關(guān)系式為 ,
當(dāng)x>100時,y與x的函數(shù)關(guān)系式為 ;
(2)如果購買本場足球賽門票超過100張,你將選擇哪一種方案,使總費用最?請說明理由;
(3)甲、乙兩單位分別采用方案一、方案二購買本場足球賽門票共700張,花去總費用計58000元,求甲、乙兩單位各購買門票多少張.
【答案】(1)y=60x+10000,y=100x,y=80x+2000;(2)方案一,理由見解析;(3)500張、200張.
【解析】
試題分析:(1)依題意可得y與x的函數(shù)關(guān)系式y(tǒng)=60x+10000;本題考查了分段函數(shù)的有關(guān)知識(0≤x≤100;x>100);
(2)設(shè)60x+10000>80x+2000,可用方案二買;當(dāng)60x+1000=80x+2000時,兩種方案均可選擇;當(dāng)60x+1000<80x+200時,可選擇方案一;
(3)設(shè)甲、乙單位購買本次足球賽門票數(shù)分別為a張、b張,分別可采用方案一或方案二購買.
試題解析:(1)方案一:y=60x+10000;當(dāng)0≤x≤100時,y=100x;當(dāng)x>100時,y=80x+2000;
(2)因為方案一y與x的函數(shù)關(guān)系式為y=60x+10000,∵x>100,方案二的y與x的函數(shù)關(guān)系式為y=80x+2000;
當(dāng)60x+10000>80x+2000時,即x<400時,選方案二進(jìn)行購買,當(dāng)60x+10000=80x+2000時,即x=400時,兩種方案都可以,當(dāng)60x+10000<80x+2000時,即x>400時,選方案一進(jìn)行購買;
(3)設(shè)甲、乙單位購買本次足球賽門票數(shù)分別為a張、b張;
∵甲、乙單位分別采用方案一和方案二購買本次足球比賽門票,
∴乙公司購買本次足球賽門票有兩種情況:b≤100或b>100.
當(dāng)b≤100時,乙公司購買本次足球賽門票費為100b,
解得,不符合題意,舍去;
當(dāng)b>100時,乙公司購買本次足球賽門票費為80b+2000,
解得,符合題意.
答:甲、乙單位購買本次足球賽門票分別為500張、200張.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,把一個長方形的紙片對折兩次,然后剪下一個角,為了得到一個鈍角為100° 的菱形,剪口與折痕所成的角的度數(shù)應(yīng)為( 。
A. 25°或50° B. 20°或50° C. 40°或50° D. 40°或80°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知a是最大的負(fù)整數(shù),b是多項式2m2n-m3n2-m-2的次數(shù),c是單項式-2xy2的系數(shù),且a,b,c分別是點A,B,C在數(shù)軸上對應(yīng)的數(shù).
(1)求a,b,c的值,并在數(shù)軸上標(biāo)出點A,B,C;
(2)若動點P,Q同時從A,B出發(fā)沿數(shù)軸負(fù)方向運動,點P的速度是每秒個單位長度,點Q的速度是每秒2個單位長度,求運動幾秒后,點Q可以追上點P?
(3)在數(shù)軸上找一點M,使點M到A,B,C三點的距離之和等于10,請直接寫出所有點M對應(yīng)的數(shù).(不必說明理由)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:甲、乙兩車分別從相距300千米的 A,B兩地同時出發(fā)相向而行,其中甲到 B地后立即返回,下圖是它們離各自出發(fā)地的距離y(千米)與行駛時間x(小時)之間的函數(shù)圖象.
(1)求甲車離出發(fā)地的距離 y(千米)與行駛時間x(小時)之間的函數(shù)關(guān)系式,并寫出自變量的取值范圍;
(2)當(dāng)它們行駛到與各自出發(fā)地的距離相等時,用了 小時,求乙車離出發(fā)地的距離 y(千米)與行駛時間 x(小時)之間的函數(shù)關(guān)系式;
(3)在(2)的條件下,求它們在行駛的過程中相遇的時間.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】把一副三角板如圖放置 其中∠ACB=∠DEC=90,∠A=45,∠D=30,斜邊 AB=4,CD=5,把三角板DCE繞點C順時針旋轉(zhuǎn)15得到三角形D1CE (如圖二),此時AB與CD1交于點O,則線段AD1的長度為( )
A. B. C. D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知∠ABC=∠DCB,添加一個條件,使△ABC≌△DCB,你添加的條件是_____.(注:只需寫出一個條件即可)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個正方體,六個面上分別寫有六個連續(xù)的整數(shù)(如圖所示),且每兩個相對面上的數(shù)字和相等,本圖所能看到的三個面所寫的數(shù)字分別是:,,,問:與它們相對的三個面的數(shù)字各是多少?為什么?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com