【題目】小敏同學測量一建筑物CD的高度,她站在B處仰望樓頂C,測得仰角為30°,再往建筑物方向走30m,到達點F處測得樓頂C的仰角為45°(B,F,D在同一條直線上)。一直小敏的眼睛與地面距離為1.5m,求這棟建筑物CD的高度(參考數(shù)據(jù): ≈1.732, ≈1.414,結(jié)果保留整數(shù))
科目:初中數(shù)學 來源: 題型:
【題目】下列條件中,不能判斷△ABC是直角三角形的是( 。
A. a:b:c=3:4:5 B. ∠A:∠B:∠C=3:4:5
C. ∠A+∠B=∠C D. a:b:c=1:2:
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】碼頭工人每天往一艘輪船50噸貨物,裝載完畢恰好用了8天時間.
(1)輪船到達目的地后開始卸貨,平均卸貨速度v(單位:噸/天)與卸貨時間t(單位:天)之間有怎樣的函數(shù)關系?
(2)由于遇到緊急情況,要求船上的貨物不超過5天卸貨完畢,那么平均每天至少要卸多少噸貨物?
(3)若原有碼頭工人10名,在(2)的條件下,至少需要增加多少名工人才能完成任務?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知A1(1,0),A2(1,1),A3(-1,1),A4(-1,-1),A5(2,-1),…,則點A2 019的坐標為____________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,平行四邊形ABCD中,∠B=30°,AB≠BC ,將△ABC沿AC翻折至△AB′C ,連結(jié)B ′D. 若 ,∠AB ′D=75°,則BC= .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】 如圖,已知矩形紙片ABCD,AD=2,AB=4,將紙片折疊,使頂點A與邊CD上的點E重合,折痕FG分別與AB、CD交于點G、F,AE與FG交于點O.
(1)如圖1,求證:A、G、E、F四點圍成的四邊形是菱形;
(2)如圖2,點N是線段BC的中點,且ON=OD,求折痕FG的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+c(a,b,c為常數(shù),且a≠0)中的x與y的部分對應值如表
x | ﹣1 | 0 | 1 | 3 |
y | ﹣1 | 3 | 5 | 3 |
下列結(jié)論:
①ac<0; ②當x>1時,y的值隨x值的增大而減;
③當 時, ; ④3是方程ax2+(b﹣1)x+c=0的一個根.
其中正確的結(jié)論是(填正確結(jié)論的序號).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,等邊△ABC中,BD⊥AC于點D,AD=3.5cm,點P、Q分別為AB、AD上的兩個定點且BP=AQ=2cm,若在BD上有一動點E使PE+QE最短,則PE+QE的最小值為_____cm
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】課本1.4有這樣一道例題:
問題4:用一根長22cm的鐵絲:
(1)能否圍成面積是30cm2的矩形?
(2)能否圍成面積是32cm2的矩形?
據(jù)此,一位同學提出問題:“用這根長22cm的鐵絲能否圍成面積最大的矩形?若能圍成,求出面積最大值;若不能圍成,請說明理由.”請你完成該同學提出的問題.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com