【題目】某服裝店以每件40元的價格購進(jìn)一批襯衫,在試銷過程中統(tǒng)計發(fā)現(xiàn),每月的銷售量y()與銷售單價x(其中x為正整數(shù),且50≤x≤75)()之間有下表關(guān)系:

銷售單價x()

50

55

60

65

70

75

每月銷售量y()

160

140

120

100

80

60

(1)yx之間的函數(shù)關(guān)系是下列函數(shù)關(guān)系之一,則yx______

A.正比例函數(shù) B.一次函數(shù) C.反比例函數(shù) D.二次函數(shù)

(2)yx的函數(shù)關(guān)系式;

(3)如果不考慮其它費(fèi)用,該店銷售這種襯衫的月利潤為1600元,這種襯衫的銷售單價應(yīng)定為多少元?

(4)如果每銷售一件襯衫需要支出各種費(fèi)用2元,設(shè)服裝店每月銷售這種襯衫獲利為w元,銷售單價為多少元時,服裝店獲利w最大,最大利潤是多少?

【答案】(1)B;(2)y=﹣4x+360;(3)這種襯衫的銷售單價應(yīng)定為50元;(4)x66時,W最大2304元.

【解析】

1)由統(tǒng)計表的數(shù)據(jù)可以直接得出yx的一次函數(shù);
2)設(shè)yx的函數(shù)關(guān)系式為y=kx+b,由待定系數(shù)法求出其解即可;
3)由月利潤=每件利潤×數(shù)量建立方程求出其解即可.
4)由純利潤=銷售利潤-各種費(fèi)用支出就可以得出結(jié)論.

(1)由統(tǒng)計表的數(shù)據(jù)變化規(guī)律就可以得出yx的一次函數(shù).

故答案為:B一次函數(shù);

(2)設(shè)yx的函數(shù)關(guān)系式為ykx+b,由題意,得

解得:

yx的函數(shù)關(guān)系式為y=﹣4x+360;

(3)由題意,得

(4x+360)(x40)1600

解得:x150,x280

50≤x≤75

x50

答:這種襯衫的銷售單價應(yīng)定為50元;

(4)由題意,得

W(4x+360)(x402)

W=﹣4x2+528x15120,

W=﹣4(x66)2+2304

a=﹣40,

x66時,W最大=2304元.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,矩形ABCD的對角線AC經(jīng)過坐標(biāo)原點(diǎn)O,矩形的邊分別平行于坐標(biāo)軸,點(diǎn)B在函數(shù)k0,x0)的圖象上,點(diǎn)D的坐標(biāo)為(﹣4,1),則k的值為(  )

A.B.C.4D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD內(nèi)接于⊙O,BD是⊙O的直徑,過點(diǎn)A作AE⊥CD,交CD的延長線于點(diǎn)E,DA平分∠BDE.

1)求證:AE是⊙O的切線;

(2)已知AE=8cm,CD=12cm,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某超市預(yù)測某飲料有發(fā)展前途,用1600元購進(jìn)一批飲料,面市后果然供不應(yīng)求,又用6000元購進(jìn)這批飲料,第二批飲料的數(shù)量是第一批的3倍,但單價比第一批貴2.

(1)第一批飲料進(jìn)貨單價多少元?

(2)若二次購進(jìn)飲料按同一價格銷售,兩批全部售完后,獲利不少于1200元,那么銷售單價至少為多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,一個扇形紙片的圓心角為90°,半徑為6.如圖2,將這張扇形紙片折疊,使點(diǎn)A與點(diǎn)O恰好重合,折痕為CD,圖中陰影為重合部分,則陰影部分的面積為_____(答案用根號表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖(1),四邊形ABCD中,ABCD,∠ADC=90°PA點(diǎn)出發(fā),以每秒1個單位長度的速度,按A→B→C→D的順序在邊上勻速運(yùn)動,設(shè)P點(diǎn)的運(yùn)動時間為t秒,△PAD的面積為S,S關(guān)于t的函數(shù)圖象如圖(2)所示,當(dāng)P運(yùn)動到BC中點(diǎn)時,△PAD的面積為( )

A. 4B. 5C. 6D. 7

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC和△ADE中,∠BAC=∠DAE90°,點(diǎn)P為射線BD,CE的交點(diǎn).

1)問題提出:如圖1,若ADAE,ABAC

①∠ABD與∠ACE的數(shù)量關(guān)系為   ;②∠BPC的度數(shù)為   

2)猜想論證:如圖2,若∠ADE=∠ABC30°,則(1)中的結(jié)論是否成立?請說明理由.

3)拓展延伸:在(1)的條件中,若AB2,AD1,若把△ADE繞點(diǎn)A旋轉(zhuǎn),當(dāng)∠EAC90°時,直接寫出PB的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一只不透明袋子中裝有三只大小、質(zhì)地都相同的小球,球面上分別標(biāo)有數(shù)字1、﹣2、3,攪勻后先從中任意摸出一個小球(不放回),記下數(shù)字作為點(diǎn)A的橫坐標(biāo),再從余下的兩個小球中任意摸出一個小球,記下數(shù)字作為點(diǎn)A的縱坐標(biāo).

(1)用畫樹狀圖或列表等方法列出所有可能出現(xiàn)的結(jié)果;

(2)求點(diǎn)A落在第四象限的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某班“數(shù)學(xué)興趣小組”對函數(shù)yx22|x|的圖象和性質(zhì)進(jìn)行了探究,探究過程如下.

1)補(bǔ)全下表,在所給坐標(biāo)系中畫出函數(shù)的圖象:

x

3

2

1

0

1

2

3

y

3

0

1

0

2)觀察圖象,寫出該函數(shù)兩條不同類型的性質(zhì);

3)進(jìn)一步探究函數(shù)圖象發(fā)現(xiàn):

函數(shù)圖象與x軸有  個交點(diǎn),所以對應(yīng)方程x22|x|0  個實(shí)數(shù)根;

方程x22|x|2  個實(shí)數(shù)根;

關(guān)于x的方程x22|x|a4個實(shí)數(shù)根,a的取值范圍是 

查看答案和解析>>

同步練習(xí)冊答案