【題目】已知拋物線滿足條件:(1)在時, 的增大而增大,在時, 的增大而減;(2)與軸有兩個交點,且兩個交點間的距離小于.以下四個結(jié)論:①;;;,說法正確的個數(shù)有( )個

A. 4 B. 3 C. 2 D. 1

【答案】B

【解析】由在時, 的增大而增大,在時, 的增大而減小,可得a>0,對稱軸為x=-2;由與軸有兩個交點,且兩個交點間的距離小于,可得拋物線的圖象與x軸的兩個交點的橫坐標位于-3-1之間, 據(jù)條件得圖象

,

觀察圖象可知,c>0, (當x=-1時,y=a-b+c>0);x=-3時,y=9a-3b+c>0,由對稱軸x=-2可得4a=b,所以9a-12a +c>0,即 ;又因拋物線與x軸有兩個交點,可知,所以,即可得,所以,綜上,正確的結(jié)論有②③④,故選B.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】王大爺飯后出去散步,從家中走20分鐘到離家900米的公園,與朋友聊天10分鐘后,用15分鐘返回家中.下面圖形表示王大爺離時間x(分)與離家距離y(米)之間的關系是( 。

A. B.

C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:是最小的正整數(shù),且、滿足,請回答問題:

)請直接寫出、的值,__________,______

)數(shù)軸上、三個數(shù)所對應的分別為、,點與點之間的距離表示為,點與點之間的距離表示為,點與點之間的距離表示為,點、、同時開始在數(shù)軸上運動,若點以每秒個單位長度的速度向左運動,點和點分別以每秒個單位長度和個單位長度的速度向右運動.

①經(jīng)過秒后,求出點與點之間的距離

②經(jīng)過秒后,請問:的值是否隨著時間的變化而改變?若變化,請說明理上;若不變,請求其值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】近幾年來全國各省市市政府民生實事之一的公共自行車建設工作已基本完成,網(wǎng)上資料顯示呼和浩特市某部門對144月份中的7天進行了公共自行車日租車輛的統(tǒng)計,結(jié)果如圖:

(1)求這7天日租車量的眾數(shù)、中位數(shù)和平均數(shù);

(2)用(1)中的平均數(shù)估計4月份(30天)該市共租車多少萬車次;

(3)資料顯示,呼市政府在公共自行車建設項目中共投入9600萬元,估計2014年共租車3200萬車次,每車次平均收入租車費0.1元,求2014年該市租車費收入占總投入的百分率(精確到0.1%).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】6分)小聰是個數(shù)學愛好者,他發(fā)現(xiàn)從1開始,連續(xù)幾個奇數(shù)相加,和的變化規(guī)律如右表所示:

加數(shù)個數(shù)

連續(xù)奇數(shù)的和S

1

1=

2

1+3=22

3

1+3+5=32

4

1+3+5+7=42

5

1+3+5+7+9=52

n

1)如果n=7,則S的值為

2)求1+3+5+7+…+199的值;

3)求13+15+17+…+79的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABCD中,AB=6,AD=9,BAD的平分線交BC于點E,交DC的延長線于點F,BGAE于G,BG=,則梯形AECD的周長為( )

A.22 B.23 C.24 D.25

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知ABC的面積為24,點D在線段AC上,點D在線段BC的延長線上,且BF=4CF,四邊形DCFE是平行四邊形,則圖中陰影部分的面積是_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,一動點從半徑為2的⊙O上的A0點出發(fā),沿著射線A0O方向運動到⊙O上的點A1處,再向左沿著與射線A1O夾角為60°的方向運動到⊙O上的點A2處;接著又從A2點出發(fā),沿著射線A2O方向運動到⊙O上的點A3處,再向左沿著與射線A3O夾角為60°的方向運動到⊙O上的點A4處;按此規(guī)律運動到點A2018處,則點A2018與點A0間的距離是( 。

A. 0 B. 2 C. D. 4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線y=x2+bx﹣2與x軸交于A、B兩點,與y軸交于C點,且A(﹣1,0).

(1)求拋物線的解析式及頂點D的坐標;

(2)判斷△ABC的形狀,證明你的結(jié)論;

(3)點M是x軸上的一個動點,當△DCM的周長最小時,求點M的坐標.

查看答案和解析>>

同步練習冊答案