如圖,在△ABC中,BC=7cm,BP、CP分別是∠ABC和∠ACB的角平分線,且PD∥AB,PE∥AC,則△PDE的周長是        cm.
7
∵BP、CP分別是∠ABC和∠ACB的角平分線,
∴∠ABP=∠PBD,∠ACP=∠PCE,
∵PD∥AB,PE∥AC,
∴∠ABP=∠BPD,∠ACP=∠CPE,
∴∠PBD=∠BPD,∠PCE=∠CPE,
∴BD=PD,CE=PE,
∴△PDE的周長=PD+DE+PE=BD+DE+EC=BC=7cm.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,A、B、C三點在同一直線上,分別以AB、BC為邊,在直線AC的同側作等邊△ABD和等邊△BCE,連接AE交BD于點M,連接CD交BE于點N,連接MN得△BMN,試判斷△BMN的形狀,并說明理由.(10分)

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,在等腰中, ,,BE是AC邊上的高,=   

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

有一個三角形的兩邊長是3和5,要使這個三角形成為直角三角形,則第三邊邊長的平方是  

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

利用“等積”計算或說理是一種很巧妙的方法, 就是一個面積從兩個不同的角度表示。如圖甲,已知Rt△ABC中,∠C=90°,CD⊥AB于D,BC=3,AC=4,求CD的長。
解題思路:利用勾股定理易得AB=5利用
,可得到CD=2.4
請你利用上述方法解答下面問題:
(1)  如圖甲,已知Rt△ABC中,∠C=90°,CD⊥AB于D,BC=5,AC=12,求CD的長。

(2)如圖乙,△ABC是邊長為2的等邊三角形,點D是BC邊上的
任意一點,DE⊥AB于E點,DF⊥AC于F點,求DE+DF的值

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,已知在等腰直角三角形中,, 平分,與相交于點,延長,使,延長,

(1)試說明:;
(2)試說明:△ABC是等腰三角形;
(3) 試說明:

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,在三角測平架中,AB=AC,在BC的中點D處掛一重錘,讓它自然下垂.如果調整架身,使重錘線正好經過點A,那么就能使BC處于水平位置.其中蘊含的數(shù)學原理是:                    .

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如果等腰三角形有一個角等于40°,那么另兩個角為_________ 

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,已知:△CAB△DEB,則BD•CA=______.

查看答案和解析>>

同步練習冊答案