如圖1,在正方形ABCD中,P是對(duì)角線BD上的一點(diǎn),點(diǎn)EAD的延長(zhǎng)線上,且PA=PE,PECDF

(1)證明:PC=PE

(2)求∠CPE的度數(shù);

(3)如圖2,把正方形ABCD改為菱形ABCD,其他條件不變,當(dāng)∠ABC=120°時(shí),連接CE,試探究線段AP與線段CE的數(shù)量關(guān)系,并說(shuō)明理由.


(1)證明:在正方形ABCD中,AB=BC

ABP=∠CBP=45°,

在△ABP和△CBP中,

,

∴△ABP≌△CBPSAS),

PA=PC,

PA=PE,

PC=PE;

(2)由(1)知,△ABP≌△CBP,

∴∠BAP=∠BCP,

∴∠DAP=∠DCP,

PA=PC,

∴∠DAP=∠E

∴∠DCP=∠E,

∵∠CFP=∠EFD(對(duì)頂角相等),

∴180°﹣∠PFC﹣∠PCF=180°﹣∠DFE﹣∠E,

即∠CPF=∠EDF=90°;

(3)在正方形ABCD中,AB=BC,∠ABP=∠CBP=45°,

在△ABP和△CBP中,

∴△ABP≌△CBPSAS),

PA=PC,∠BAP=∠BCP,

PA=PE,

PC=PE,

∴∠DAP=∠DCP,

PA=PC

∴∠DAP=∠E,

∴∠DCP=∠E

∵∠CFP=∠EFD(對(duì)頂角相等),

∴180°﹣∠PFC﹣∠PCF=180°﹣∠DFE﹣∠E,

即∠CPF=∠EDF=180°﹣∠ADC=180°﹣120°=60°,

∴△EPC是等邊三角形,

PC=CE

AP=CE;


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:


如圖,在矩形ABCD中.點(diǎn)O在邊AB上,∠AOC=∠BOD.求證:AO=OB.

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:


極坐標(biāo)系下,直線 與圓的公共點(diǎn)個(gè)數(shù)是________;

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:


把所有正奇數(shù)從小到大排列,并按如下規(guī)律分組:(1),(3,5,7),(9,11,13,15,17),(19,21,23,25,27,29,31),…,現(xiàn)有等式Am=(i,j)表示正奇數(shù)m是第i組第j個(gè)數(shù)(從左往右數(shù)),如A7=(2,3),則A2015=(  )

A. (31,50)  B. (32,47)  C. (33,46)  D. (34,42)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:


如圖,將一張邊長(zhǎng)為6cm的正方形紙片按虛線裁剪后,恰好圍成底面是正六邊形的棱柱,則這個(gè)六棱柱的側(cè)面積為  cm2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:


計(jì)算:(ab23=(  )

     A. 3ab2    B.   ab6     C.     a3b6      D.      a3b2

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:


)因式分解:x2﹣49= 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:


閱讀理解

拋物線y=x2上任意一點(diǎn)到點(diǎn)(0,1)的距離與到直線y=﹣1的距離相等,你可以利用這一性質(zhì)解決問(wèn)題.

問(wèn)題解決

如圖,在平面直角坐標(biāo)系中,直線y=kx+1與y軸交于C點(diǎn),與函數(shù)y=x2的圖象交于A,B兩點(diǎn),分別過(guò)A,B兩點(diǎn)作直線y=﹣1的垂線,交于E,F(xiàn)兩點(diǎn).

(1)寫出點(diǎn)C的坐標(biāo),并說(shuō)明∠ECF=90°;

(2)在△PEF中,M為EF中點(diǎn),P為動(dòng)點(diǎn).

①求證:PE2+PF2=2(PM2+EM2);

②已知PE=PF=3,以EF為一條對(duì)角線作平行四邊形CEDF,若1<PD<2,試求CP的取值范圍.

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:


如圖,正方形ABCD邊長(zhǎng)為1,以AB為直徑作半圓,點(diǎn)P是CD 中點(diǎn),BP與半圓交于點(diǎn)Q,連結(jié)DQ.給出如下結(jié)論:①DQ=1;②;③S△PDQ;④cos∠ADQ=.其中正確結(jié)論是_________.(填寫序號(hào))

 

查看答案和解析>>

同步練習(xí)冊(cè)答案