【題目】寫出命題“等腰三角形底邊上的角平分線與中線互相重合”的逆命題,并用推理的方法證明你所寫的這個逆命題是真命題.
逆命題:___________________;
已知:____________________;
求證:___________________.
證明:
【答案】如果一個三角形一邊上的高線和中線互相重合,那么這個三角形是等腰三角形.
【解析】
根據(jù)逆命題的概念寫出逆命題;寫出已知,求證,證明△ADB≌△ADC,根據(jù)全等三角形的性質證明結論.
定理“等腰三角形底邊上的角平分線與中線互相重合”的逆命題為:如果一個三角形一邊上的高線和中線互相重合,那么這個三角形是等腰三角形;
已知:如圖,△ABC中,AD⊥BC,BD=DC,
求證:△ABC是等腰三角形
證明:∵AD⊥BC,
∴∠ADB=∠ADC=90°,
在△ADB和△ADC中,
,
∴△ADB≌△ADC(SAS).
∴AB=AC,即△ABC是等腰三角形;
故答案為:如果一個三角形一邊上的高線和中線互相重合,那么這個三角形是等腰三角形.
科目:初中數(shù)學 來源: 題型:
【題目】小明參加某個智力競答節(jié)目,答對最后兩道單選題就順利通關.第一道單選題有3個選項,第二道單選題有4個選項,這兩道題小明都不會,不過小明還有一個“求助”沒有用(使用“求助”可以讓主持人去掉其中一題的一個錯誤選項).
(1)如果小明第一題不使用“求助”,那么小明答對第一道題的概率是 .
(2)如果小明將“求助”留在第二題使用,請用樹狀圖或者列表來分析小明順利通關的概率.
(3)從概率的角度分析,你建議小明在第幾題使用“求助”.(直接寫出答案)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,長方形ABCD中,AB=8,BC=12,點E是邊BC上一點,BE=5,點F是射線BA上一動點,連接EF,將△BEF沿著EF折疊,使B點的對應點P落在長方形一邊的垂直平分線上,連接BP,則BP的長是_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】拋物線L:y=﹣x2+bx+c經過點A(0,1),與它的對稱軸直線x=1交于點B.
(1)直接寫出拋物線L的解析式;
(2)如圖1,過定點的直線y=kx﹣k+4(k<0)與拋物線L交于點M、N.若△BMN的面積等于1,求k的值;
(3)如圖2,將拋物線L向上平移m(m>0)個單位長度得到拋物線L1,拋物線L1與y軸交于點C,過點C作y軸的垂線交拋物線L1于另一點D.F為拋物線L1的對稱軸與x軸的交點,P為線段OC上一點.若△PCD與△POF相似,并且符合條件的點P恰有2個,求m的值及相應點P的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某公司投入研發(fā)費用80萬元萬元只計入第一年成本,成功研發(fā)出一種產品公司按訂單生產產量銷售量,第一年該產品正式投產后,生產成本為6元件此產品年銷售量萬件與售價元件之間滿足函數(shù)關系式.
求這種產品第一年的利潤萬元與售價元件滿足的函數(shù)關系式;
該產品第一年的利潤為20萬元,那么該產品第一年的售價是多少?
第二年,該公司將第一年的利潤20萬元萬元只計入第二年成本再次投入研發(fā),使產品的生產成本降為5元件為保持市場占有率,公司規(guī)定第二年產品售價不超過第一年的售價,另外受產能限制,銷售量無法超過12萬件請計算該公司第二年的利潤至少為多少萬元.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在一個可以自由轉動的轉盤中,指針位置固定,三個扇形的面積都相等,且分別標有數(shù)字1,2,3.
(1)小明轉動轉盤一次,當轉盤停止轉動時,指針所指扇形中的數(shù)字是奇數(shù)的概率為________;
(2)小明先轉動轉盤一次,當轉盤停止轉動時,記錄下指針所指扇形中的數(shù)字;接著再轉動轉盤一次,當轉盤停止轉動時,再次記錄下指針所指扇形中的數(shù)字,求這兩個數(shù)字之和是3的倍數(shù)的概率(用畫樹狀圖或列表等方法求解)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在等腰直角△ABC中,∠A=90°,AB=AC,D為邊BC中點,DE⊥DF,若四邊形AEDF的面積是4,則等腰直角△ABC的面積為_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,反比例函數(shù)y= (x>0)的圖象經過矩形OABC對角線的交點M,分別與AB、BC相交于點D、E.若四邊形ODBE的面積為6,則k的值為________.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com