如圖,以扇形OAB的頂點(diǎn)O為原點(diǎn),半徑OB所在的直線為x軸,建立平面直角坐標(biāo)系,點(diǎn)B的坐標(biāo)為(2,0),若拋物線與扇形OAB的邊界總有兩個公共點(diǎn),則實(shí)數(shù)的取值范圍是              

解析試題分析:由圖可知,∠AOB=45°,∴直線OA的解析式為,聯(lián)立,消掉y得,,△=,即時,拋物線與OA有一個交點(diǎn),此交點(diǎn)的橫坐標(biāo)為1,∵點(diǎn)B的坐標(biāo)為(2,0),∴OA=2,∴點(diǎn)A的坐標(biāo)為(),∴交點(diǎn)在線段AO上;當(dāng)拋物線經(jīng)過點(diǎn)B(2,0)時,,解得,∴要使拋物線與扇形OAB的邊界總有兩個公共點(diǎn),實(shí)數(shù)k的取值范圍是.故答案為:
考點(diǎn):二次函數(shù)綜合題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:填空題

二次函數(shù)y=2(x﹣1)2+3的圖象的頂點(diǎn)坐標(biāo)是            .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

已知二次函數(shù)的圖像過點(diǎn)(1,0)和(,0),且,現(xiàn)在有5個判斷:(1) (2) (3) (4) (5),請把你認(rèn)為判斷正確的序號寫出來               

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

記方程的兩實(shí)數(shù)根為x1、x2,在平面直角坐標(biāo)系中有三點(diǎn)A、B、C,它們的坐標(biāo)分別為A (x1,0),B(x2,0),C(0,12),若以此三點(diǎn)為頂點(diǎn)構(gòu)成的三角形面積為6,則實(shí)數(shù)k的值為       

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

已知拋物線>0)的對稱軸為直線,且經(jīng)過點(diǎn)(-3,),(4,),試比較的大小:    (填“>”,“<”或“=”).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

若將拋物線y=3x2+1向下平移1個單位后,則所得新拋物線的解析式是        

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

二次函數(shù)y=ax2+bx+c(a,b,c是常數(shù),a≠0)圖象的對稱軸是直線x=1,其圖象的一部分如圖所示.對于下列說法:①abc<0;②a-b+c<0;③3a+c<0;④當(dāng)-1<x<3時,y>0.其中正確的是__________(把正確的序號都填上).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

在平面直角坐標(biāo)系中,把拋物線向上平移3個單位,再向左平移1個單位,則所得拋物線的解析式是   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

已知關(guān)于x的方程mx2﹣3(m+1)x+2m+3=0.
(1)求證:無論m取任何實(shí)數(shù),該方程總有實(shí)數(shù)根;
(2)若m≠0,拋物線y=mx2﹣3(m+1)x+2m+3與x軸的交點(diǎn)到原點(diǎn)的距離小于2,且交點(diǎn)的橫坐標(biāo)是整數(shù),求m的整數(shù)值.

查看答案和解析>>

同步練習(xí)冊答案