【題目】兩條平行直線上各有個點,用這個點按如下規(guī)則連接線段:
①平行線之間的點在連線段時,可以有共同的端點,但不能有其它交點;
②符合①要求的線段必須全部畫出.
圖展示了當時的情況,此時圖中三角形的個數(shù)為;圖展示了當時的一種情況,此時圖中三角形的個數(shù)為.試回答下列問題:
當時,請在圖中畫出使三角形個數(shù)最少的圖形,此時圖中三角形的個數(shù)是________;
試猜想當有對點時,按上述規(guī)則畫出的圖形中,最少有________個三角形;
當時,按上述規(guī)則畫出的圖形中,最少有________個三角形.
【答案】42(n-1)4022
【解析】
(1)根據(jù)題意畫出圖形,根據(jù)圖形數(shù)出三角形個數(shù)即可得出答案;
(2)分析可得,當n=1時的情況,此時圖中三角形的個數(shù)為0,有0=2(11);當n=2時的一種情況,此時圖中三角形的個數(shù)為2,有2=2(21);…故當有n對點時,最少可以畫2(n1)個三角形;
(3)當n=2012時,按上述規(guī)則畫出的圖形中,最少有2×(20121)=4022個三角形.
(1)
如圖:
此時圖中三角形的個數(shù)是:4個;
故答案為:4;
(2)當有n對點時,最少可以畫2(n1)個三角形;
故答案為:2(n1);
(3)2×(20121)=4022個,
當n=2012時,最少可以畫4022個三角形,
故答案為:4022.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,拋物線y=ax2+bx(a<0)的圖象與x軸交于A、O兩點,頂點為B,將該拋物線的圖象繞原點O旋轉(zhuǎn)180°后,與x軸交于點C,頂點為D,若此時四邊形ABCD恰好為矩形,則b的值為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC的兩條角平分線BD、CE交于O,且∠A=60°,則下列結(jié)論中不正確的是( )
A.∠BOC=120° B.BC=BE+CD C.OD=OE D.OB=OC
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列結(jié)論中正確的是( )
A. 三角形的一個外角大于這個三角形的任何一個內(nèi)角
B. 三角形按邊分類可以分為:不等邊三角形、等腰三角形、等邊三角形
C. 三角形的三個內(nèi)角中,最多有一個鈍角
D. 若三條線段、、,滿足,則此三條線段一定能組成三角形
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)y= x2(0≤x≤2)的圖象記為曲線C1 , 將C1繞坐標原點O逆時針旋轉(zhuǎn)90°,得曲線C2 .
(1)請畫出C2;
(2)寫出旋轉(zhuǎn)后A(2,5)的對應(yīng)點A1的坐標;
(3)直接寫出C1旋轉(zhuǎn)至C2過程中掃過的面積 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,C是 的中點,CE⊥AB于E,BD交CE于點F.
(1)求證:CF=BF;
(2)若CD=6,AC=8,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】利用直尺和圓規(guī)作一個角等于已知角的作法如下:
①以點O為圓心,以任意長為半徑畫弧,分別交OA、OB于點D、C;
②作射線O′B′,以點O′為圓心,以 長為半徑畫弧,交O′B′于點C′;
③以點C′為圓心,以 長為半徑畫弧,兩弧交于點D′;
④過點D′作射線O′A′,∴∠A′O′B′為所求.
(1)請將上面的作法補充完整;
(2)△OCD≌△O′C′D′的依據(jù)是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知直線y=3x﹣3分別交x軸,y軸于A,B兩點,拋物線y=x2+bx+c經(jīng)過A,B兩點,點C是拋物線與x軸的另一個交點(與點A不重合),點D是拋物線的頂點,請解答下列問題.
(1)求拋物線的解析式;
(2)判斷△BCD的形狀,并說明理由;
(3)求△BCD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】附加題:(y﹣z)2+(x﹣y)2+(z﹣x)2=(y+z﹣2x)2+(z+x﹣2y)2+(x+y﹣2z)2.
求 的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com