【題目】如圖,O為直線AB上一點,OD平分AOCDOE=90°

1)若AOC=50°,求出BOD的度數(shù)

2)試判斷OE是否平分BOC,并說明理由

【答案】(1)155°;(2)證明見解析.

【解析】試題分析:1)已知OD平分∠AOC,根據(jù)角平分線的定義求得∠AOD的度數(shù),再由平角的定義求得BOD的度數(shù);(2已知OD平分∠AOC,根據(jù)角平分線的定義求得∠AOD的度數(shù),再求得∠COE∠BOE的度數(shù),即可判斷OE是否平分BOC.

試題解析:

(1)∵OD平分∠AOC

∴∠AOD=∠AOC =

∴∠BOD=-∠AOD

=-

=

(2)∵OD平分∠AOC

∴∠COD=∠AOC=

∴∠COE=-∠COD=

∴∠BOE=-∠AOC-∠COE=--=

∴∠COE=∠BOE,即OE平分∠BOC

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,是由8個大小相同的小正方體組合成的簡單幾何體.

(1)該幾何體的主視圖如圖所示,請在下面方格紙中分別畫出它的左視圖和俯視圖;(邊框線加粗畫出,并涂上陰影)

(2)如果在這個幾何體上再添加一些相同的小正方體,并保持這個幾何體的俯視圖和主視圖不變,那么請在下列網(wǎng)格圖中畫出添加小正方體后所得幾何體所有可能的左視圖.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如果60m表示“向北走60m”,那么“向南走40m”可以表示為(
A.﹣20m
B.﹣40m
C.20m
D.40m

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線與x軸交于A(-1,0)B(3,0)兩點,與y軸交于點C(0,3).

1)求該拋物線所對應(yīng)的函數(shù)關(guān)系式;

(2)設(shè)拋物線上的一個動點P的橫坐標(biāo)為t0t3,過點PPDBC于點D.求線段PD的長的最大值;② 當(dāng)BD=2CD時,求t的值;

3)若點Q是拋物線的對稱軸上的動點,拋物線上存在點M,使得以B、C、Q、M為頂點的四邊形為平行四邊形,請求出所有滿足條件的點M的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列事件概率為1的是( 。

A.射擊運動員射擊一次,命中靶心

B.任意畫一個三角形,其外角和是360°

C.籃球隊員投籃一次未命中

D.丟一個骰子,向上一面的點數(shù)為7

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是一根可伸縮的魚竿,魚竿是用10節(jié)大小不同的空心套管連接而成.閑置時魚竿可收縮,完全收縮后,魚竿長度即為第1節(jié)套管的長度(如圖1所示):使用時,可將魚竿的每一節(jié)套管都完全拉伸(如圖2所示).圖3是這跟魚竿所有套管都處于完全拉伸狀態(tài)下的平面示意圖.已知第1節(jié)套管長50cm,第2節(jié)套管長46cm,以此類推,每一節(jié)套管均比前一節(jié)套管少4cm.完全拉伸時,為了使相鄰兩節(jié)套管連接并固定,每相鄰兩節(jié)套管間均有相同長度的重疊,設(shè)其長度為xcm.

(1)請直接寫出第5節(jié)套管的長度;

(2)當(dāng)這根魚竿完全拉伸時,其長度為311cm,求x的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,O為直線AB上一點過點O作射線OC,使BOC=120°.將一直角三角板的直角頂點放在點O一邊OM在射線OB,另一邊ON在直線AB的下方

1)將圖1中的三角板繞點O逆時針旋轉(zhuǎn)至圖2,使一邊OMBOC的內(nèi)部,且恰好平分BOC此時直線ON是否平分AOC?請說明理由

2)將圖1中的三角板繞點O以每秒10°的速度沿順時針方向旋轉(zhuǎn)一周,在旋轉(zhuǎn)的過程中,t秒時,直線ON恰好平分銳角AOC, t的值為 秒(直接寫出結(jié)果)

3)將圖1中的三角板繞點O順時針旋轉(zhuǎn)至圖3,使ONAOC的內(nèi)部試探索在旋轉(zhuǎn)過程中,AOMNOC的差是否發(fā)生變化?若不變,請求出這個差值若變化,請求出差的變化范圍

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2的平方等于(  )

A.±4B.2C.4D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,在ABCD中,E,F(xiàn)分別是邊AD,BC上的點,且AE=CF,直線EF分別交BA的延長線、DC的延長線于點G,H,交BD于點O.

(1)求證:△ABE≌△CDF;

(2)連接DG,若DG=BG,則四邊形BEDF是什么特殊四邊形?請說明理由.

查看答案和解析>>

同步練習(xí)冊答案