【題目】如圖1,在菱形ABCD中,AC=2,BD=2,AC、BD相交于點(diǎn)O.

(1)AB的長(zhǎng)為   ;

(2)如圖2,將一個(gè)足夠大的直角三角板60°角的頂點(diǎn)放在菱形ABCD的頂點(diǎn)A處,繞點(diǎn)A左右旋轉(zhuǎn),其中三角板60°角的兩邊分別與邊BC,CD相交于點(diǎn)E,F(xiàn),連接EFAC相交于點(diǎn)G.

①求證:ABE≌△ACF;

②判斷AEF是哪一種特殊三角形,并說(shuō)明理由.

【答案】(1)2;(2)①見(jiàn)解析;②△AEF是等邊三角形,理由見(jiàn)解析

【解析】分析:(1)利用菱形對(duì)角線互相垂直且平分可得AO、OB,根據(jù)勾股定理求出即可;

2)①由(1)知,菱形ABCD的邊長(zhǎng)是2AC=2,然后由△ABC和△ACD是等邊三角形,利用ASA可證得△ABE≌△ACF;

②由①可得AE=AF,根據(jù)有一個(gè)角是60°的等腰三角形是等邊三角形推出即可.

詳解:(1)∵在菱形ABCD中,AC=2,BD=2

∴∠AOB=90°,OA=AC=1BO=BD=,

RtAOB中,由勾股定理得:AB==2;

故答案為:2;

2)①∵由(1)知,菱形ABCD的邊長(zhǎng)是2AC=2,

∴△ABC和△ACD是等邊三角形,

∴∠BAC=BAE+CAE=60°,

∵∠EAF=CAF+CAE=60°,

∴∠BAE=CAF,

在△ABE和△ACF中,

,

∴△ABE≌△ACFASA),

②△AEF是等邊三角形,

理由是:∵△ABE≌△ACF

AE=AF,

∵∠EAF=60°,

∴△AEF是等邊三角形.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校實(shí)驗(yàn)課程改革,初三年級(jí)設(shè)罝了A,B,C,D四門(mén)不同的拓展性課程(每位學(xué)生只選修其中一門(mén),所有學(xué)生都有一門(mén)選修課程),學(xué)校摸底調(diào)査了初三學(xué)生的選課意向,并將調(diào)查結(jié)果繪制成兩個(gè)不完整的統(tǒng)計(jì)圖,問(wèn)該校初三年級(jí)共有多少學(xué)生?其中要選修B、C課程的各有多少學(xué)生?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABC中邊AB的垂直平分線分別交BC,AB于點(diǎn)D,E,AE=3cm,ADC的周長(zhǎng)為9cm,ABC的周長(zhǎng)是(

A. 10cm B. 12cm C. 15cm D. 17cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,在平面直角坐標(biāo)系中,△AOB為等腰直角三角形,A(4,4).

1)點(diǎn)B坐標(biāo)為

2)如圖2,若Cx軸正半軸上一動(dòng)點(diǎn),以AC為直角邊作等腰RtACD,∠ACD=90,連OD,求∠AOD的度數(shù);

3)如圖3,過(guò)點(diǎn)Ay軸的垂線交y軸于點(diǎn)E,Fx軸負(fù)半軸上一點(diǎn),點(diǎn)GEF的延長(zhǎng)線上,以EG為直角邊作等腰RtEGH,過(guò)點(diǎn)Ax軸垂線交EH于點(diǎn)M,連FM,等式=1是否成立?若成立,請(qǐng)證明;若不成立,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)中學(xué)生體質(zhì)健康綜合評(píng)定成績(jī)?yōu)?/span>x分,滿分為100分.規(guī)定:85x100A級(jí),75x85B級(jí),60x75C級(jí),x60D級(jí).現(xiàn)隨機(jī)抽取福海中學(xué)部分學(xué)生的綜合評(píng)定成績(jī),整理繪制成如下兩幅不完整的統(tǒng)計(jì)圖.請(qǐng)根據(jù)圖中的信息,解答下列問(wèn)題:

(1)在這次調(diào)查中,一共抽取了________名學(xué)生,a________%;

(2)補(bǔ)全條形統(tǒng)計(jì)圖;

(3)扇形統(tǒng)計(jì)圖中C級(jí)對(duì)應(yīng)的圓心角為________度;

(4)若該校共有2 000名學(xué)生,請(qǐng)你估計(jì)該校D級(jí)學(xué)生有多少名?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】1)如圖,在四邊形ABCD中,AB=AD,B=D=90°,EF分別是邊BC、CD上的點(diǎn),且EAF=BAD求證:EF=BE+FD

2)如圖,在四邊形ABCD中,AB=AD,B+D=180°,E、F分別是邊BC、CD上的點(diǎn),且EAF=BAD,(1)中的結(jié)論是否仍然成立?

3)如圖,在四邊形ABCD中,AB=AD,B+ADC=180°,E、F分別是邊BCCD延長(zhǎng)線上的點(diǎn),且EAF=BAD,(1)中的結(jié)論是否仍然成立?若成立,請(qǐng)證明;若不成立,請(qǐng)寫(xiě)出它們之間的數(shù)量關(guān)系,并證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,O為直線AB上一點(diǎn),∠AOC=50°,OD平分∠AOC,∠DOE=90°.

1)求出∠BOD的度數(shù);

2)經(jīng)測(cè)量發(fā)現(xiàn):OE平分∠BOC,請(qǐng)通過(guò)計(jì)算說(shuō)明道理.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平行四邊形ABCD中,邊AB的垂直平分線交AD于點(diǎn)E,交CB的延長(zhǎng)線于點(diǎn)F,連接AF,BE.

(1)求證:AGE≌△BGF;

(2)試判斷四邊形AFBE的形狀,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】上星期我市某水果價(jià)格呈上升趨勢(shì),某超市第一次用1000元購(gòu)進(jìn)的這種水果很快賣(mài)完,第二次又用960元購(gòu)進(jìn)該水果,但第二次每千克的進(jìn)價(jià)是第一次進(jìn)價(jià)的1.2倍,購(gòu)進(jìn)數(shù)量比第一次少了20千克.

(1)求第一次購(gòu)進(jìn)這種水果每千克的進(jìn)價(jià)是多少元?

(2)本星期受天氣影響,批發(fā)市場(chǎng)這種水果的數(shù)量有所減少.該超市所購(gòu)進(jìn)的數(shù)量比上星期所進(jìn)購(gòu)的總量減少了4a%,每千克的進(jìn)價(jià)在上星期第二次進(jìn)價(jià)的基礎(chǔ)上上漲5a%,結(jié)果本星期進(jìn)貨總額比上星期進(jìn)貨總額少16元,求a的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案