【題目】如圖,在四邊形中,,要使四邊形是平行四邊形,下列可添加的條件不正確的是(

A.B.C.D.

【答案】D

【解析】

平行四邊形的五種判定方法分別是:兩組對邊分別平行的四邊形是平行四邊形;兩組對邊分別相等的四邊形是平行四邊形;一組對邊平行且相等的四邊形是平行四邊形;兩組對角分別相等的四邊形是平行四邊形;對角線互相平分的四邊形是平行四邊形.根據(jù)平行四邊形的判定,逐個驗證即可.

解:A.,

∴四邊形是平行四邊形(一組對邊平行且相等的四邊形是平行四邊形),故本選項不符合題意;

B.,

∴四邊形是平行四邊形(兩組對邊分別平行的四邊形是平行四邊形),故本選項不符合題意;

C.

∴四邊形是平行四邊形(兩組對邊分別平行的四邊形是平行四邊形),故本選項不符合題意;

D.若添加不一定是平行四邊形,如圖:

四邊形ABCD為等腰梯形,故本選項符合題意.

故選:D

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,∠MON=30°,點A1,A2,A3在射線ON上,點B1B2,B3在射線OM上,A1B1A2,A2B2A3A3B3A4均為等邊三角形.若OA1=1,則AnBnAn+1的邊長為______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某種油菜籽在相同條件下的發(fā)芽實驗結果如下表:

每批粒數(shù)n

100

150

200

500

800

1 000

發(fā)芽的粒數(shù)m

65

111

136

345

560

700

發(fā)芽的頻率

0.65

0.74

0.68

0.69

a

b

1a ,b ;

2)這種油菜籽發(fā)芽的概率估計值是多少?請簡要說明理由;

3)如果該種油菜籽發(fā)芽后的成秧率為90%,則在相同條件下用10 000粒該種油菜籽可得到油菜秧苗多少棵?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】式子的計算結果的個位數(shù)上的數(shù)字( )

A.1B.3C.7D.9

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形ABCD,AB=6,點E在邊CD上,CE=2DE,將△ADE沿AE對折至△AFE,延長EF交邊BC于點G,連接AG、CF,下列結論:①△ABG≌△AFG;②BG=GC;③EG=DE+BG;④AG∥CF;⑤S△FCA=3.6,其中正確結論是_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,將直角三角形ABC沿AB方向平移得到直角三角形DEF,已知BE=3,BE=3,FG=1,AC=5,則圖中陰影部分的面積為(

A.10B.13.5C.20D.9.5

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,某辦公樓AB的后面有一建筑物CD,當光線與地面的夾角是22°時,辦公樓在建筑物的墻上留下高3米的影子CE,而當光線與地面夾角是45°時,辦公樓頂A在地面上的影子F與墻角C有27米的距離(BF,C在一條直線上).

(1)求辦公樓AB的高度;

(2)若要在A,E之間掛一些彩旗,請你求出AE之間的距離.

(參考數(shù)據(jù):sin22°,cos22°,tan22°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線y=ax2+bx+1經(jīng)過點(2,6),且與直線y=x+1相交于A,B兩點,點A在y軸上,過點B作BC⊥x軸,垂足為點C(4,0).

(1)求拋物線的解析式;

(2)若P是直線AB上方該拋物線上的一個動點,過點P作PD⊥x軸于點D,交AB于點E,求線段PE的最大值;

(3)在(2)的條件,設PC與AB相交于點Q,當線段PC與BE相互平分時,請求出點Q的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】閱讀理解:

材料1:對于一個關于的二次三項式,除了可以利用配方法求請多項式的取值范圍外,愛思考的小川同學還想到了其他的方法:比如先令,然后移項可得:,再利用一元二次方程根的判別式來確定的取值范圍,請仔細閱讀下面的例子:

例:求的取值范圍:

解:令

;

材料2:在學習完一元二次方程的解法后,愛思考的小川同學又想到仿造一元二次方程的解法來解決一元二次不等式的解集問題,他的具體做法如下:

若關于的一元二次方程)有兩個不相等的實數(shù)根,

則關于的一元二次不等式)的解集為:

則關于的一元二次不等式)的解集為:

請根據(jù)上述材料,解答下列問題:

1)若關于的二次三項式為常數(shù))的最小值為-6,則________

2)求出代數(shù)式的取值范圍;

3)若關于的代數(shù)式(其中、為常數(shù),且)的最小值為-4,最大值為7,請求出滿足條件的,的值.

查看答案和解析>>

同步練習冊答案