【題目】如圖,矩形ABCD的對角線AC、BD交于點O,CE∥BD,DE∥AC.
(1)證明:四邊形OCED為菱形;
(2)若AC=4,求四邊形CODE的周長.
【答案】
(1)解:證明:∵CE∥BD,DE∥AC,
∴四邊形CODE為平行四邊形
又∵四邊形 ABCD 是矩形
∴OD=OC
∴四邊形CODE為菱形
(2)解:∵四邊形 ABCD 是矩形
∴OC=OD= AC
又∵AC=4
∴OC=2
由(1)知,四邊形CODE為菱形
∴四邊形CODE的周長為=4OC=2×4=8.
【解析】(1)首先由CE∥BD,DE∥AC,可證得四邊形CODE是平行四邊形,又由四邊形ABCD是矩形,根據(jù)矩形的性質(zhì),易得OC=OD,即可判定四邊形CODE是菱形,(2)求出OC=OD=2,由菱形的性質(zhì)即可得出答案.
【考點精析】認真審題,首先需要了解矩形的性質(zhì)(矩形的四個角都是直角,矩形的對角線相等).
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,E為AB邊上一點,連接DE,將△ADE繞點D逆時針旋轉(zhuǎn)90°得到△CDF,作點F關(guān)于CD的對稱點,記為點G,連接DG.
(1)依題意在圖1中補全圖形;
(2)連接BD,EG,判斷BD與EG的位置關(guān)系并在圖2中加以證明;
(3)當(dāng)點E為線段AB的中點時,直接寫出∠EDG的正切值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】學(xué)校射擊隊計劃從甲、乙兩人中選拔一人參加運動會射擊比賽,在選拔過程中,每人射擊10次,計算他們的平均成績及方差如下表:
選手 | 甲 | 乙 |
平均數(shù)(環(huán)) | 9.5 | 9.5 |
方差 | 0.035 | 0.015 |
請你根據(jù)上表中的數(shù)據(jù)選一人參加比賽,最適合的人選是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列計算正確的是( )
A. -x(-x+y)=x2+xy
B. m(m-1)=m2-1
C. 5a-2a(a-1)=3a2-3a
D. (a-2a2+1)·(-3a)=6a3-3a2-3a
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點A(-1,0),B(0,2),點C在x軸上,且∠ABC=90°.
(1)求點C的坐標(biāo);
(2)求經(jīng)過A,B,C三點的拋物線的表達式;
(3)在(2)中的拋物線上是否存在點P,使∠PAC=∠BCO?若存在,求出點P的坐標(biāo);若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,⊙P的圓心是(2,a)(a >0),半徑是2,與y軸相切于點C,直線y=x被⊙P截得的弦AB的長為,則a的值是( )
A. B. C. D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com