【題目】如圖,使ΔABC≌ΔADC成立的條件是( )
A.AB=AD,∠B=∠DB.AB=AD,∠ACB=ACD
C.BC=DC,∠BAC=∠DACD.AB=AD,∠BAC=∠DAC
【答案】D
【解析】
兩個(gè)三角形已經(jīng)有一條公共邊AC,將此條件與每個(gè)選項(xiàng)的條件結(jié)合,根據(jù)全等三角形的判定定理,逐項(xiàng)判斷是否能夠判定ΔABC≌ΔADC.
A.AC=AC,AB=AD,∠B=∠D三個(gè)條件構(gòu)成“邊邊角”,不能判定ΔABC≌ΔADC;
B.AB=AD,AC=AC,∠ACB=∠ACD三個(gè)條件構(gòu)成“邊邊角”,不能判定ΔABC≌ΔADC;
C.BC=AD,AC=AC,∠BAC=∠DAC三個(gè)條件構(gòu)成“邊邊角”,不能判定ΔABC≌ΔADC;
D.AB=AD,∠BAC=∠DAC,AC=AC三個(gè)條件構(gòu)成“邊角邊”,可以判定ΔABC≌ΔADC;
故選D.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,△ABC的三個(gè)頂點(diǎn)的位置如圖所示,點(diǎn)A'的坐標(biāo)是(-2,2),現(xiàn)將△ABC平移,使點(diǎn)A變換為A',點(diǎn)B'、C'分別是點(diǎn)B、C的對(duì)應(yīng)點(diǎn).
(1)請(qǐng)畫(huà)出平移后的△A'B'C'(不寫(xiě)畫(huà)法),并直接寫(xiě)出點(diǎn)B'、C'的坐標(biāo):B'_________,C'_________;
(2)若△ABC內(nèi)部一點(diǎn)P的坐標(biāo)為(a,b),則點(diǎn)P的對(duì)應(yīng)點(diǎn)P'的坐標(biāo)是____________ .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】知識(shí)背景
當(dāng)a>0且x>0時(shí),因?yàn)椋?/span>﹣)2≥0,所以x﹣2+≥0,從而x+(當(dāng)x=時(shí)取等號(hào)).
設(shè)函數(shù)y=x+(a>0,x>0),由上述結(jié)論可知:當(dāng)x=時(shí),該函數(shù)有最小值為2.
應(yīng)用舉例
已知函數(shù)為y1=x(x>0)與函數(shù)y2=(x>0),則當(dāng)x==2時(shí),y1+y2=x+有最小值為2=4.
解決問(wèn)題
(1)已知函數(shù)為y1=x+3(x>﹣3)與函數(shù)y2=(x+3)2+9(x>﹣3),當(dāng)x取何值時(shí),有最小值?最小值是多少?
(2)已知某設(shè)備租賃使用成本包含以下三部分:一是設(shè)備的安裝調(diào)試費(fèi)用,共490元;二是設(shè)備的租賃使用費(fèi)用,每天200元;三是設(shè)備的折舊費(fèi)用,它與使用天數(shù)的平方成正比,比例系數(shù)為0.001.若設(shè)該設(shè)備的租賃使用天數(shù)為x天,則當(dāng)x取何值時(shí),該設(shè)備平均每天的租貨使用成本最低?最低是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】等邊三角形ABC 中,BD是角平分線(xiàn),點(diǎn)E在BC邊的延長(zhǎng)線(xiàn)上,且CD=CE,則∠BDE的度數(shù)是( )
A.90°B.100°C.120°D.無(wú)法確定
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在半徑為4的⊙O中,CD為直徑,AB⊥CD且過(guò)半徑OD的中點(diǎn),點(diǎn)E為⊙O上一動(dòng)點(diǎn),CF⊥AE于點(diǎn)F.當(dāng)點(diǎn)E從點(diǎn)B出發(fā)順時(shí)針運(yùn)動(dòng)到點(diǎn)D時(shí),點(diǎn)F所經(jīng)過(guò)的路徑長(zhǎng)為( )
A. π B. π C. π D. π
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】列方程解應(yīng)用題:某商場(chǎng)經(jīng)市場(chǎng)調(diào)查,預(yù)計(jì)一款夏季童裝能獲得市場(chǎng)青睞,便花費(fèi)15000元購(gòu)進(jìn)了一批此款童裝,上市后很快售罄.該店決定繼續(xù)進(jìn)貨,由于第二批進(jìn)貨數(shù)量是第一批進(jìn)貨數(shù)量的2倍,因此單價(jià)便宜了10元,購(gòu)進(jìn)第二批童裝一共花費(fèi)了27000元.那該店所購(gòu)進(jìn)的第一批童裝的價(jià)格是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】拋物線(xiàn)上部分點(diǎn)的橫坐標(biāo)x,縱坐標(biāo)y的對(duì)應(yīng)值如下表:
x | … | ﹣2 | ﹣1 | 0 | 1 | 2 | … |
y | … | 0 | 4 | 6 | 6 | 4 | … |
從上表可知,下列說(shuō)法正確的個(gè)數(shù)是( )
①拋物線(xiàn)與x軸的一個(gè)交點(diǎn)為(﹣2,0);②拋物線(xiàn)與y軸的交點(diǎn)為(0,6);
③拋物線(xiàn)的對(duì)稱(chēng)軸是x=1;④在對(duì)稱(chēng)軸左側(cè)y隨x增大而增大.
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知等腰△ABC中,AB=AC,∠BAC=120°,AD⊥BC于點(diǎn)D,點(diǎn)P是BA延長(zhǎng)線(xiàn)上一點(diǎn),點(diǎn)O是線(xiàn)段AD上一點(diǎn),OP=OC,下面的結(jié)論: ①∠APO+∠DCO=30°;②△OPC是等邊三角形;③AC=AO+AP;④S△ABC=S四邊形AOCP,其中正確的個(gè)數(shù)是( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在邊長(zhǎng)為的菱形中,對(duì)角線(xiàn),點(diǎn)是直線(xiàn)上的動(dòng)點(diǎn),于,于.
如圖,在邊長(zhǎng)為的菱形中,對(duì)角線(xiàn),點(diǎn)是直線(xiàn)上的動(dòng)點(diǎn),于,于.
對(duì)角線(xiàn)的長(zhǎng)是________,菱形的面積是________;
如圖,當(dāng)點(diǎn)在對(duì)角線(xiàn)上運(yùn)動(dòng)時(shí),的值是否發(fā)生變化?請(qǐng)說(shuō)明理由;
如圖,當(dāng)點(diǎn)在對(duì)角線(xiàn)的延長(zhǎng)線(xiàn)上時(shí),的值是否發(fā)生變化?若不變請(qǐng)說(shuō)明理由,若變化,請(qǐng)直接寫(xiě)出、之間的數(shù)量關(guān)系,不用明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com