【題目】如圖,將矩形ABCD的四個(gè)角向內(nèi)翻折后,恰好拼成一個(gè)無(wú)縫隙無(wú)重合的四邊形EFGH,EH=12cm,EF=l6cm則邊AD的長(zhǎng)是( )
A.12cmB.16cmC.20cmD.24cm
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀理解:
二次根式的除法,要化去分母中的根號(hào),需將分子、分母同乘以一個(gè)恰當(dāng)?shù)亩胃剑?/span>
例如:化簡(jiǎn).
解:將分子、分母同乘以得:.
類(lèi)比應(yīng)用:
(1)化簡(jiǎn): ;
(2)化簡(jiǎn): .
拓展延伸:
寬與長(zhǎng)的比是的矩形叫黃金矩形.如圖①,已知黃金矩形ABCD的寬AB=1.
(1)黃金矩形ABCD的長(zhǎng)BC= ;
(2)如圖②,將圖①中的黃金矩形裁剪掉一個(gè)以AB為邊的正方形ABEF,得到新的矩形DCEF,猜想矩形DCEF是否為黃金矩形,并證明你的結(jié)論;
(3)在圖②中,連結(jié)AE,則點(diǎn)D到線段AE的距離為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在正方形ABCD中,對(duì)角線BD所在的直線上有兩點(diǎn)E、F滿足BE=DF,連接AE、AF、CE、CF,如圖所示.
(1)求證:△ABE≌△ADF;
(2)試判斷四邊形AECF的形狀,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】填寫(xiě)推理理由,將過(guò)程補(bǔ)充完整:
如圖,,.求證:.
證明:∵(已知),
∴___________(______________________________).
∵(已知),
∴_________(如果兩條直線都與第三條直線平行,那么這兩條直線也互相平行).
∴__________=(_________________________________)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】銅仁某校高中一年級(jí)組建籃球隊(duì),對(duì)甲、乙兩名備選同學(xué)進(jìn)行定位投籃測(cè)試,每次投10個(gè)球,共投10次.甲、乙兩名同學(xué)測(cè)試情況如圖所示:
根據(jù)圖6提供的信息填寫(xiě)下表:
平均數(shù) | 眾數(shù) | 方差 | |
甲 | |||
乙 |
如果你是高一學(xué)生會(huì)文體委員,會(huì)選擇哪名同學(xué)進(jìn)入籃球隊(duì)?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為提高市民的環(huán)保意識(shí),倡導(dǎo)“節(jié)能減排,綠色出行”,某市計(jì)劃在城區(qū)投放一批“共享單車(chē)”,這批單車(chē)分為A、B兩種不同款型,其中A型車(chē)單價(jià)400元,B型車(chē)單價(jià)320元.
(1)今年年初,“共享單車(chē)”試點(diǎn)投放在某市中心城區(qū)正式啟動(dòng),投放A、B兩種款型的單車(chē)共100輛,總價(jià)值36800元.求本次試點(diǎn)投放的A型車(chē)、B型車(chē)的輛數(shù).
(2)試點(diǎn)投放活動(dòng)得到了廣大市民的認(rèn)可,該市決定將此項(xiàng)公益活動(dòng)在整個(gè)城區(qū)全面鋪開(kāi).按照試點(diǎn)投放中A、B兩車(chē)型的數(shù)量比進(jìn)行投放,且投資總價(jià)值不低于184萬(wàn)元.問(wèn)整個(gè)城區(qū)全面鋪開(kāi)時(shí)投放的A型車(chē)、B型車(chē)至少多少輛?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀理解:己知:對(duì)于實(shí)數(shù)a≥0,b≥0,滿足a+b≥2,當(dāng)且僅當(dāng)a = b時(shí),等號(hào)成立,此時(shí)取得代數(shù)式a+b的最小值.
根據(jù)以上結(jié)論,解決以下問(wèn)題:
(1)拓展:若a>0,當(dāng)且僅當(dāng)a=___時(shí),a+有最小值,最小值為____;
(2)應(yīng)用:
①如圖1,已知點(diǎn)P為雙曲線y=(x>0)上的任意一點(diǎn),過(guò)點(diǎn)P作PA⊥x軸,PB丄y軸,四邊形OAPB的周長(zhǎng)取得最小值時(shí),求出點(diǎn)P的坐標(biāo)以及周長(zhǎng)最小值:
②如圖2,已知點(diǎn)Q是雙曲線y=(x>0)上一點(diǎn),且PQ∥x軸, 連接OP、OQ,當(dāng)線段OP取得最小值時(shí),在平面內(nèi)取一點(diǎn)C,使得以0、P、Q、C為頂點(diǎn)的四邊形是平行四邊形,求出點(diǎn)C的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,直線AB、CD相交于點(diǎn)O,OE⊥OC,OF平分∠AOE.
(1)若,則∠AOF的度數(shù)為______;
(2)若,求∠BOC的度數(shù)。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,已知∠BDC=∠EFD,∠AED=∠ACB.
(1)試判斷∠DEF與∠B的大小關(guān)系,并說(shuō)明理由;
(2)若D、E、F分別是AB、AC、CD邊上的中點(diǎn),S△DEF=4,求S△ABC.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com