【題目】已知點OABC的兩邊AB,AC所在直線的距離相等,OB=OC.

(1)如圖①若點O在邊BC,求證:AB=AC;

(2)如圖②,若點OABC的內(nèi)部,求證:AB=AC;

(3)若點OABC的外部,AB=AC成立嗎?請畫圖表示.

【答案】(1)證明見解析;(2)證明見解析;(3)不一定成立,畫圖見解析.

【解析】

試題(1)求證AB=AC,就是求證∠B=∠C,可通過構(gòu)建全等三角形來求.過點O分別作OE⊥ABE,OF⊥ACF,那么可以用斜邊直角邊定理(HL)證明直角三角形DEBDFC全等來實現(xiàn);

2)思路和輔助線同(1)證得Rt△OEB≌Rt△OFC后,可得出∠OBE=∠OCF,等腰三角形ABC中,∠ABC=∠ACB,因此∠OBC=∠OCB,那么OB=OC;

3)不一定成立,當(dāng)∠A的平分線所在直線與邊BC的垂直平分線重合時,有AB=AC;否則,AB≠AC

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】八(2)班組織了一次經(jīng)典誦讀比賽,甲、乙兩隊各10人的比賽成績?nèi)缦卤?10分制):

7

8

9

7

10

10

9

10

10

10

10

8

7

9

8

10

10

9

10

9

(1)甲隊成績的中位數(shù)是 分,乙隊成績的眾數(shù)是 分;

(2)計算乙隊的平均成績和方差;

(3)已知甲隊成績的方差是1.4,則成績較為整齊的是 隊.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計算: ﹣2sin60°+( ﹣π)0﹣( 1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD內(nèi)接于⊙O,對角線AC為⊙O的直徑,過點C作AC的垂線交AD的延長線于點E,點F為CE的中點,連接DB,DF.
(1)求證:DF是⊙O的切線;
(2)若DB平分∠ADC,AB=a,AD:DE=4:1,寫出求DE長的思路.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,OP∠MON的平分線,請你利用該圖形畫一對以OP所在直線為對稱軸的全等三角形,并將添加的全等條件標(biāo)注在圖上.

請你參考這個作全等三角形的方法,解答下列問題:

(1)如圖2,在△ABC中,∠ACB是直角,∠B=60°,AD、CE分別是∠BAC∠BCA的平分線,AD、CE相交于點F,求∠EFA的度數(shù);

(2)在(1)的條件下,請判斷FEFD之間的數(shù)量關(guān)系,并說明理由;

(3)如圖3,在△ABC中,如果∠ACB不是直角,而( 1 )中的其他條件不變,試問在(2)中所得結(jié)論是否仍然成立?若成立,請證明;若不成立,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,OP∠MON的平分線,請你利用該圖形畫一對以OP所在直線為對稱軸的全等三角形,并將添加的全等條件標(biāo)注在圖上.

請你參考這個作全等三角形的方法,解答下列問題:

(1)如圖2,在△ABC中,∠ACB是直角,∠B=60°,AD、CE分別是∠BAC∠BCA的平分線,AD、CE相交于點F,求∠EFA的度數(shù);

(2)在(1)的條件下,請判斷FEFD之間的數(shù)量關(guān)系,并說明理由;

(3)如圖3,在△ABC中,如果∠ACB不是直角,而( 1 )中的其他條件不變,試問在(2)中所得結(jié)論是否仍然成立?若成立,請證明;若不成立,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖在平面直角坐標(biāo)系中,的頂點的坐標(biāo)為,頂點的坐標(biāo)為,頂點的坐標(biāo)為.

(1)請你在所給的平面直角坐標(biāo)系中,畫出關(guān)于軸對稱的;

(2)將(1)中得到的向下移動4個單位得到,畫出;

(3)在中有一點,直接寫出經(jīng)過以上兩次圖形變換后中對應(yīng)點的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(探究)如圖①,∠AFH和∠CHF的平分線交于點OEG經(jīng)過點O且平行于FH,分別與AB、CD交于點EG

(1)若∠AFH60°,∠CHF50°,則∠EOF_____度,∠FOH_____度.

(2)若∠AFH+CHF100°,求∠FOH的度數(shù).

(拓展)如圖②,∠AFH和∠CHI的平分線交于點O,EG經(jīng)過點O且平行于FH,分別與AB、CD交于點EG.若∠AFH+CHFα,直接寫出∠FOH的度數(shù).(用含a的代數(shù)式表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AB=AC,∠BAC=30°,點D是△ABC內(nèi)一點,DB=DC,∠DCB=30°,點E是BD延長線上一點,AE=AB.

(1)求∠ADE的度數(shù);

(2)求證:DE=AD+DC;

查看答案和解析>>

同步練習(xí)冊答案