【題目】為建設(shè)生態(tài)平頂山,某校學生在植樹節(jié)那天,組織九年級八個班的學生到山頂公園植樹,各班植樹情況如下表:下列說法錯誤的是( )

班 級

棵 數(shù)

15

18

22

25

29

14

18

19


A.這組數(shù)據(jù)的眾數(shù)是18
B.這組數(shù)據(jù)的平均數(shù)是20
C.這組數(shù)據(jù)的中位數(shù)是18.5
D.這組數(shù)據(jù)的方差為0

【答案】D
【解析】解:這組數(shù)據(jù)的眾數(shù)是18,A說法正確;
這組數(shù)據(jù)的平均數(shù)是: (15+18+22+25+29+14+18+19)=20,B說法正確;
這組數(shù)據(jù)的中位數(shù)是: =18.5,C說法正確;
因為這組數(shù)據(jù)不都相同,
所以方差不為0,D說法錯誤,
故選:D.
【考點精析】本題主要考查了中位數(shù)、眾數(shù)的相關(guān)知識點,需要掌握中位數(shù)是唯一的,僅與數(shù)據(jù)的排列位置有關(guān),它不能充分利用所有數(shù)據(jù);眾數(shù)可能一個,也可能多個,它一定是這組數(shù)據(jù)中的數(shù)才能正確解答此題.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,矩形OABC的兩邊在坐標軸上,點A的坐標為(10,0),拋物線y=ax2+bx+4過點B,C兩點,且與x軸的一個交點為D(﹣2,0),點P是線段CB上的動點,設(shè)CP=t(0<t<10).

(1)請直接寫出B、C兩點的坐標及拋物線的解析式;
(2)過點P作PE⊥BC,交拋物線于點E,連接BE,當t為何值時,∠PBE=∠OCD?
(3)點Q是x軸上的動點,過點P作PM∥BQ,交CQ于點M,作PN∥CQ,交BQ于點N,當四邊形PMQN為正方形時,請求出t的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在矩形紙片ABCD中,AB=4,BC=10,E是AD邊的中點,把矩形紙片沿過點E的直線折疊,使點A落在BC邊上,則折痕EF的長為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB,AC為⊙O的弦,AB=AC,連接AO.
(1)如圖l,求證:∠OAC=∠OAB;
(2)如圖2,過點B作AC的垂線交⊙O于點D,連接CD,設(shè)AO的延長線交BD于點E,求證:BE=CD;
(3)在(2)的條件下,如圖3,點F,G分別在CD,BD的延長線上,連接AG,AF,若CF×AG=8,∠GAB=45°+ ∠GAE,∠B=50°,求△ACF的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB是⊙O的直徑,C是 的中點,⊙O的切線BD交AC的延長線于點D,E是OB的中點,CE的延長線交切線BD于點F,AF交⊙O于點H,連接BH.
(1)求證:AC=CD;
(2)若OB=2,求BH的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形紙片ABCD中,AB=5,AD=2,點P在線段AB上運動,設(shè)AP=x,現(xiàn)將紙片折疊,使點D與點P重合,得折痕EF(點E、F為折痕與矩形邊的交點),再將紙片還原,則四邊形EPFD為菱形時,x的取值范圍是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,△ABC是等腰直角三角形,∠BAC=90°,A(1,0),B(0,2),C(3,1)拋物線y= x2+bx﹣2的圖象過C點,交y軸于點D.

(1)在后面的橫線上直接寫出點D的坐標及b的值: , b=
(2)平移該拋物線的對稱軸所在直線l,設(shè)l與x軸交于點G(x,0),當OG等于多少時,恰好將△ABC的面積分為相等的兩部分?
(3)點P是拋物線上一動點,是否存在點P,使四邊形PACB為平行四邊形?若存在,直接寫出P點坐標;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在矩形ABCD中,AD=8,AB=6,點E為射線DC上一個動點,把△ADE沿AE折疊,使點D落在點F處,若△CEF為直角三角形時,DE的長為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】矩形OABC在平面直角坐標系中的位置如圖所示,點B的坐標為(3,4),D是OA的中點,點E在AB上,當△CDE的周長最小時,點E的坐標為( 。

A.(3,1)
B.(3,
C.(3,
D.(3,2)

查看答案和解析>>

同步練習冊答案