【題目】如圖,平行四邊形ABCD的周長(zhǎng)是18 cm,其對(duì)角線ACBD相交于點(diǎn)O,過(guò)點(diǎn)O的直線分別與AD,BC相交于點(diǎn)E,F,且OE=2 cm,則四邊形CDEF的周長(zhǎng)是_______

【答案】13cm

【解析】

利用平行四邊形的性質(zhì)得出AO=CO,ADBC,進(jìn)而得出∠EAC=FCO,再利用ASA求出△AOE≌△COF,即可得出答案.

解:∵平行四邊形ABCD的對(duì)角線AC,BD交于點(diǎn)O,

AO=CO,ADBC,

∴∠EAC=FCO

在△AOE和△COF中,

EAO=∠FCO,AOCO,∠AOE=∠COF,

∴△AOE≌△COFASA),

AE=CF

∴四邊形CDEF的周長(zhǎng)=CD+CF+EF+ED=CD+AD+2OE=9+4=13cm,

故答案為:13cm

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖(1),已知點(diǎn)G在正方形ABCD的對(duì)角線AC上,GEBC,垂足為點(diǎn)E,GFCD,垂足為點(diǎn)F.

(1)證明與推斷:

①求證:四邊形CEGF是正方形;

②推斷:的值為   

(2)探究與證明:

將正方形CEGF繞點(diǎn)C順時(shí)針?lè)较蛐D(zhuǎn)α角(0°<α<45°),如圖(2)所示,試探究線段AGBE之間的數(shù)量關(guān)系,并說(shuō)明理由:

(3)拓展與運(yùn)用:

正方形CEGF在旋轉(zhuǎn)過(guò)程中,當(dāng)B,E,F(xiàn)三點(diǎn)在一條直線上時(shí),如圖(3)所示,延長(zhǎng)CGAD于點(diǎn)H.若AG=6,GH=2,則BC=   

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形OABC的邊長(zhǎng)為6,AC分別位于x軸、y軸上,點(diǎn)PAB上,CPOB于點(diǎn)Q,函數(shù)y的圖象經(jīng)過(guò)點(diǎn)Q,若SBPQSOQC,則k的值為___

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在矩形紙片ABCD中,BM,DN分別平分∠ABC,∠CDA,沿BP折疊,點(diǎn)A恰好落在BM上的點(diǎn)E處,延長(zhǎng)PEDN于點(diǎn)F沿DQ折疊,點(diǎn)C恰好落在DN上的點(diǎn)G處,延長(zhǎng)QGBM于點(diǎn)H,若四邊形EFGH恰好是正方形,且邊長(zhǎng)為1,則矩形ABCD的面積為____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,在平面直角坐標(biāo)系內(nèi),A,Bx軸上兩點(diǎn),以AB為直徑的⊙My軸于C,D兩點(diǎn),C的中點(diǎn),弦AEy軸于點(diǎn)F,且點(diǎn)A的坐標(biāo)為(20),CD8

1)求⊙M的半徑;

2)動(dòng)點(diǎn)P在⊙M的圓周上運(yùn)動(dòng).

①如圖1,當(dāng)FP的長(zhǎng)度最大時(shí),點(diǎn)P記為P,在圖1中畫(huà)出點(diǎn)P0,并求出點(diǎn)P0橫坐標(biāo)a的值;

②如圖1,當(dāng)EP平分∠AEB時(shí),求EP的長(zhǎng)度;

③如圖2,過(guò)點(diǎn)D作⊙M的切線交x軸于點(diǎn)Q,當(dāng)點(diǎn)P與點(diǎn)AB不重合時(shí),請(qǐng)證明為定值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線y =x與反比例函數(shù)y =x0)的圖象交于點(diǎn)A,已知點(diǎn)A的橫坐標(biāo)為4

1)求反比例函數(shù)的解析式;

2)將直線y =x向上平移3個(gè)單位后的直線ly =x0)的圖象交于點(diǎn)C

求點(diǎn)C的坐標(biāo);

y =x0)的圖象在點(diǎn)AC之間的部分與線段OA,OC圍成的區(qū)域(不含邊界)為W,則區(qū)域W內(nèi)的整點(diǎn)(橫,縱坐標(biāo)都是整數(shù)的點(diǎn))的個(gè)數(shù)為 .

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,二次函數(shù)的圖象與x軸交于A3,0和B1,0兩點(diǎn),交y軸于點(diǎn)C0,3,點(diǎn)C、D是二次函數(shù)圖象上的一對(duì)對(duì)稱點(diǎn),一次函數(shù)的圖象過(guò)點(diǎn)B、D

1求二次函數(shù)的解析式;

2根據(jù)圖象直接寫(xiě)出使一次函數(shù)值大于二次函數(shù)值的x的取值范圍;

3若直線與y軸的交點(diǎn)為E,連結(jié)AD、AE,求ADE的面積

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】正方形ABCD的邊長(zhǎng)為1,點(diǎn)OBC邊上的一個(gè)動(dòng)點(diǎn)(與BC不重合),以O為頂點(diǎn)在BC所在直線的上方作∠MON=90°

1)當(dāng)OM經(jīng)過(guò)點(diǎn)A時(shí),

①請(qǐng)直接填空:ON______(可能,不可能)過(guò)D點(diǎn):(圖1僅供分析)

②如圖2,在ON上截取OE=OA,過(guò)E點(diǎn)作EF垂直于直線BC,垂足為點(diǎn)F,作EHCDH,求證:四邊形EFCH為正方形;

③如圖2,將②中的已知與結(jié)論互換,即在ON上取點(diǎn)EE點(diǎn)在正方形ABCD外部),過(guò)E點(diǎn)作EF垂直于直線BC,垂足為點(diǎn)F,作EHCDH,若四邊形EFCH為正方形,那么OEOA是否相等?請(qǐng)說(shuō)明理由;

2)當(dāng)點(diǎn)O在射線BC上且OM不過(guò)點(diǎn)A時(shí),設(shè)OM交邊ABG,且OG=2.在ON上存在點(diǎn)P,過(guò)P點(diǎn)作PK垂直于直線BC,垂足為點(diǎn)K,使得SPKO=SOBG,連接GP,則當(dāng)BO為何值時(shí),四邊形PKBG的面積最大?最大面積為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知關(guān)于x的方程x2+(m﹣3)x﹣m(2m﹣3)=0

(1)證明:無(wú)論m為何值方程都有兩個(gè)實(shí)數(shù)根;

(2)是否存在正數(shù)m,使方程的兩個(gè)實(shí)數(shù)根的平方和等于26?若存在,求出滿足條件的正數(shù)m的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案