【題目】如圖,在Rt△ABC中,∠C=90°,以頂點A為圓心,適當(dāng)長為半徑畫弧,分別交AB、AC于點M、N,再分別以點M、N為圓心,大于MN的長為半徑畫弧,兩弧交于點P,射線AP交邊BC于點D.下列說法錯誤的是( 。
A. B. 若,則點D到AB的距離為2
C. 若,則D.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖在等腰△ABC中,其中AB=AC,∠A=40°,P是△ABC內(nèi)一點,且∠1=∠2,則∠BPC等于( )
A. 110° B. 120° C. 130° D. 140°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:中,過B點作BE⊥AD,.
(1)如圖1,點在的延長線上,連,作于,交于點.求證:;
(2)如圖2,點在線段上,連,過作,且,連交于,連,問與有何數(shù)量關(guān)系,并加以證明;
(3)如圖3,點在CB延長線上,且,連接、的延長線交于點,若,請直接寫出的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為保護(hù)環(huán)境,我市公交公司計劃購買A型和B型兩種環(huán)保節(jié)能公交車共10輛.若購買A型公交車1輛,B型公交車2輛,共需400萬元;若購買A型公交車2輛,B型公交車1輛,共需350萬元.
(1)求購買A型和B型公交車每輛各需多少萬元?
(2)預(yù)計在某線路上A型和B型公交車每輛年均載客量分別為60萬人次和100萬人次.若該公司購買A型和B型公交車的總費用不超過1200萬元,且確保這10輛公交車在該線路的年均載客總和不少于680萬人次,則該公司有哪幾種購車方案?
(3)在(2)的條件下,哪種購車方案總費用最少?最少總費用是多少萬元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】今年汶川車?yán)遄酉搏@豐收,車?yán)遄右簧鲜校甑耐趵习逵?/span>2500元購進(jìn)一批車?yán)遄,很快售完;老板又?/span>4400元購進(jìn)第二批車?yán)遄,所購?shù)量是第一批的2倍,由于進(jìn)貨量增加,進(jìn)價比第一批每干克少了3元.”
(l)第一批車?yán)遄用壳Э诉M(jìn)價多少元?.
(2)該老板在銷售第二批車?yán)遄訒r,售價在第二批進(jìn)價的基礎(chǔ)上增加了,售出后,為了盡快售完,決定將剩余車?yán)遄釉诘诙M(jìn)價的基礎(chǔ)上每千克降價元進(jìn)行促銷,結(jié)果第二批車?yán)遄拥匿N售利潤為1520元,求的值。(利潤=售價一進(jìn)價)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖1,四邊形中,,,點分別在邊上,且,求證:.
(2)如圖2,四邊形中,,點在邊上,連接,平分交于點,,,連接.
①找出圖中與相等的線段,并加以證明;
②求的度數(shù)(用含的式子表示).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為培養(yǎng)學(xué)生的特長愛好,提高學(xué)生的綜合素質(zhì),某校音樂特色學(xué)習(xí)班準(zhǔn)備從京東商城里一次性購買若干個尤克里里和豎笛,已知豎笛的單價是60元/個,尤克里里的單價是170元/個.根據(jù)學(xué)校實際情況,需一次性購買豎笛和尤克里里共20個,但要求購買豎笛和尤克里里的總費用不超過2450元,則該校最多可以購買多少個尤克里里?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】△ABC為等腰直角三角形,AB=AC,△ADE為等腰直角三角形,AD=AE,點D在直線BC上,連接CE.
(1)判斷:①CE、CD、BC之間的數(shù)量關(guān)系;②CE與BC所在直線之間的位置關(guān)系,并說明理由;
(2)若D在CB延長線上,(1)中的結(jié)論是否成立?若成立,請直接寫出結(jié)論,若不成立,請說明理由;
(3)若D在BC延長線上,(1)中的結(jié)論是否成立?若成立,請直接寫出結(jié)論,若不成立,請寫出你發(fā)現(xiàn)的結(jié)論,并計算:當(dāng)CE=10cm,CD=2cm時,BC的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)的圖象與x軸交于點A,B,與y軸交于點C.點P是該函數(shù)圖象上的動點,且位于第一象限,設(shè)點P的橫坐標(biāo)為x.
(1)寫出線段AC, BC的長度:AC= ,BC= ;
(2)記△BCP的面積為S,求S關(guān)于x的函數(shù)表達(dá)式;
(3)過點P作PH⊥BC,垂足為H,連結(jié)AH,AP,設(shè)AP與BC交于點K,探究:是否存在四邊形ACPH為平行四邊形?若存在,請求出的值;若不存在,請說明理由,并求出的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com