【題目】如圖,在平面直角坐標(biāo)系中,兩個(gè)函數(shù)y=x,y=﹣x+6的圖象交于點(diǎn)A.動(dòng)點(diǎn)P從點(diǎn)O開(kāi)始沿OA方向以每秒1個(gè)單位的速度運(yùn)動(dòng),作PQ∥x軸交直線BC于點(diǎn)Q,以PQ為一邊向下作正方形PQMN,設(shè)它與△OAB重疊部分的面積為S.
(1)求點(diǎn)A的坐標(biāo).
(2)試求出點(diǎn)P在線段OA上運(yùn)動(dòng)時(shí),S與運(yùn)動(dòng)時(shí)間t(秒)的關(guān)系式.
(3)在(2)的條件下,S是否有最大值若有,求出t為何值時(shí),S有最大值,并求出最大值;若沒(méi)有,請(qǐng)說(shuō)明理由.
(4)若點(diǎn)P經(jīng)過(guò)點(diǎn)A后繼續(xù)按原方向、原速度運(yùn)動(dòng),當(dāng)正方形PQMN與△OAB重疊部分面積最大時(shí),運(yùn)動(dòng)時(shí)間t滿足的條件是 .
【答案】(1)A(4,4);(2)見(jiàn)解析;(3)有最大值,當(dāng)t=2時(shí),S的最大值為12;(4)t≥12.
【解析】
(1)因?yàn)閮蓚(gè)函數(shù)y=x,y=-x+6的圖象交于點(diǎn)A,所以將兩個(gè)函數(shù)的解析式聯(lián)立,得到方程組,解之即可;
(2)因?yàn)辄c(diǎn)P在直線OA即y=x上以每秒1個(gè)單位的速度運(yùn)動(dòng),所以OP=t,而OA是第一、三象限坐標(biāo)軸夾角的平分線,所以點(diǎn)P坐標(biāo)為(t,t),又因PQ∥x軸交直線BC于點(diǎn)Q,所以可得點(diǎn)Q的縱坐標(biāo)為t,并且點(diǎn)Q在y=-x+6上,因此可得到關(guān)于x、t的關(guān)系式,經(jīng)過(guò)變形可用t表示x,即得到點(diǎn)Q坐標(biāo)為(12t,t),PQ=12t,當(dāng)重疊部分是正方形時(shí),分情況代入面積公式中求解;
(3)結(jié)合(2)中的關(guān)系式可知有最大值,并且最大值應(yīng)在0<t≤3中,利用二次函數(shù)最值的求法就可得到S的最大值為12;
(4)若點(diǎn)P經(jīng)過(guò)點(diǎn)A后繼續(xù)按原方向、原速度運(yùn)動(dòng),當(dāng)正方形PQMN與△OAB重疊部分面積正好最大時(shí),此時(shí)重合部分就是△AOB,B的坐標(biāo)為(12,0),并且有PB⊥OB,PB=OB=12,所以OP=12,即t≥12.
(1)由可得,
∴A(4,4);
(2)點(diǎn)P在y=x上,OP=t,
則點(diǎn)P坐標(biāo)為,
點(diǎn)Q的縱坐標(biāo)為,并且點(diǎn)Q在y=﹣x+6上,
∴ ,
即點(diǎn)Q坐標(biāo)為,,
當(dāng)時(shí),,
當(dāng)時(shí), ,
當(dāng)點(diǎn)P到達(dá)A點(diǎn)時(shí),t=2,
當(dāng)3﹤t﹤4時(shí),S=,
=;
(3)有最大值,最大值應(yīng)在中,
,
當(dāng)t=2時(shí),S的最大值為12;
(4)當(dāng)正方形PQMN與△OAB重疊部分面積正好最大時(shí),此時(shí)重合部分就是△AOB,
∵B的坐標(biāo)為(12,0),PB⊥OB,
∴PB=OB=12,
∴OP=12,
∴t≥12.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,菱形紙片ABCD的邊長(zhǎng)為2,∠ABC=60°,將菱形ABCD沿EF,GH折疊,使得點(diǎn)B,D兩點(diǎn)重合于對(duì)角線BD上一點(diǎn)P(如圖2),則六邊形AEFCHG面積的最大值是( )
A.
B.
C.2﹣
D.1+
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,長(zhǎng)方形ABCD在坐標(biāo)平面內(nèi),點(diǎn)A的坐標(biāo)是A(,1),且邊AB,CD與x軸平行,邊AD,BC與y軸平行,AB=4,AD=2.
(1)求B,C,D三點(diǎn)的坐標(biāo);
(2)怎樣平移,才能使A點(diǎn)與原點(diǎn)O重合?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC是等邊三角形,D為BC邊上一個(gè)動(dòng)點(diǎn)(D與B、C均不重合),AD=AE,∠DAE=60°,連接CE.
(1)求證:△ABD≌△ACE;
(2)求證:CE平分∠ACF;
(3)若AB=2,當(dāng)四邊形ADCE的周長(zhǎng)取最小值時(shí),求BD的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖是二次函數(shù)y=ax2+bx+c圖象的一部分,圖象過(guò)點(diǎn)A(-3,0),對(duì)稱軸為x=-1.給出四個(gè)結(jié)論:①b2 > 4ac;②2a+b=0;③a-b+c=0;④5a < b.其中正確結(jié)論有( )
A.1個(gè)
B.2個(gè)
C.3個(gè)
D.4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在ABCD中,BD是對(duì)角線,且DB⊥BC,E、F分別為邊AB、CD的中點(diǎn).求證:四邊形DEBF是菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】中,,點(diǎn)分別是邊上的點(diǎn),點(diǎn)是一動(dòng)點(diǎn),令,,.
(1)若點(diǎn)在線段上,如圖①所示,且,則_____;
(2)若點(diǎn)在邊上運(yùn)動(dòng),如圖②所示,則、、之間的關(guān)系為______;
(3)如圖③,若點(diǎn)在斜邊的延長(zhǎng)線上運(yùn)動(dòng),請(qǐng)寫(xiě)出、、之間的關(guān)系式,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:線段AB,BC,∠ABC=90°.求作:矩形ABCD.以下是甲、乙兩同學(xué)的作業(yè):
甲:(1)以點(diǎn)C為圓心,AB長(zhǎng)為半徑畫(huà)弧;
(2)以點(diǎn)A為圓心,BC長(zhǎng)為半徑畫(huà);
(3)兩弧在BC上方交于點(diǎn)D,連接AD,CD,四邊形ABCD即為所求(如圖1)
乙:(1)連接AC,作線段AC的垂直平分線,交AC于點(diǎn)M;
(2)連接BM并延長(zhǎng),在延長(zhǎng)線上取一點(diǎn)D,使MD=MB,連接AD,CD,四邊形ABCD即為所求(如圖2).
對(duì)于兩人的作業(yè),下列說(shuō)法正確的是( 。
A. 兩人都對(duì) B. 兩人都不對(duì) C. 甲對(duì),乙不對(duì) D. 甲不對(duì),乙對(duì)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,B、C是⊙A上的兩點(diǎn),AB的垂直平分線與⊙A交于E、F兩點(diǎn),與線段AC交于D點(diǎn).若∠BFC=20°,則∠DBC=( )
A.30°
B.29°
C.28°
D.20°
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com