【題目】為支持國(guó)家南水北調(diào)工程建設(shè),小王家由原來(lái)養(yǎng)殖戶(hù)變?yōu)榉N植戶(hù),經(jīng)市場(chǎng)調(diào)查得知,種植草莓不超過(guò)20畝時(shí),所得利潤(rùn)y(元)與種植面積m(畝)滿(mǎn)足關(guān)系式y(tǒng)=1500m;超過(guò)20畝時(shí),y=1380m+2400.而當(dāng)種植櫻桃的面積不超過(guò)15畝時(shí),每畝可獲得利潤(rùn)1800元;超過(guò)15畝時(shí),每畝獲得利潤(rùn)z(元)與種植面積x(畝)之間的函數(shù)關(guān)系如下表(為所學(xué)過(guò)的一次函數(shù)、反比例函數(shù)或二次函數(shù)中的一種).
(1)設(shè)小王家種植x畝櫻桃所獲得的利潤(rùn)為P元,直接寫(xiě)出P關(guān)于x的函數(shù)關(guān)系式,并寫(xiě)出自變量的取值范圍;
(2)如果小王家計(jì)劃承包40畝荒山種植草莓和櫻桃,當(dāng)種植櫻桃面積x(畝)滿(mǎn)足0<x<20時(shí),求小王家總共獲得的利潤(rùn)w(元)的最大值.
【答案】(1);(2)61500元.
【解析】
試題分析:(1)根據(jù)圖表的性質(zhì),可以得出P關(guān)于x的函數(shù)關(guān)系式和出x的取值范圍.
(2)根據(jù)利潤(rùn)=畝數(shù)×每畝利潤(rùn),可得①當(dāng)0<x≤15時(shí), ②當(dāng)15<x<20時(shí),利潤(rùn)的函數(shù)式,利用二次函數(shù)的性質(zhì)即可解題;
試題解析:(1)觀察圖表的數(shù)量關(guān)系,可以得出P關(guān)于x的函數(shù)關(guān)系式為:
;
(2)∵利潤(rùn)=畝數(shù)×每畝利潤(rùn),∴①當(dāng)0<x≤15時(shí),W=1800x+1380(40﹣x)+2400=420x+55200,當(dāng)x=15時(shí),W有最大值,W最大=6300+55200=61500;
②當(dāng)15<x<20,W=﹣20x+2100+1380(40﹣x)+2400=﹣1400x+59700,∵﹣1400x+59700<61500,∴x=15時(shí)有最大值為:61500元.
綜上所述:當(dāng)x=15時(shí),W有最大值,W最大=61500.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某市將大、中、小學(xué)生的視力進(jìn)行抽樣分析,其中大、中、小學(xué)生的人數(shù)比為2:3:5,若已知中學(xué)生被抽到的人數(shù)為150人,則應(yīng)抽取的樣本容量等于( )
(A)1500 (B)1000 (C)150 (D)500
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】用“☆”定義一種新運(yùn)算:對(duì)于任意有理數(shù)a和b , 規(guī)定a☆b=ab2+2ab+a.
如:1☆3=1×32+2×1×3+1=16.
(1)求(﹣2)☆3的值;
(2)若( ☆3)☆(﹣ )=8,求a的值;
(3)若2☆x=m , ( x)☆3=n(其中x為有理數(shù)),試比較m , n的大小.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】△ABC在平面直角坐標(biāo)系xOy中的位置如圖所示.(不寫(xiě)解答過(guò)程,直接寫(xiě)出結(jié)果)
(1)若△A1B1C1與△ABC關(guān)于原點(diǎn)O成中心對(duì)稱(chēng),則點(diǎn)A1的坐標(biāo)為 ;
(2)將△ABC向右平移4個(gè)單位長(zhǎng)度得到△A2B2C2,則點(diǎn)B2的坐標(biāo)為 ;
(3)將△ABC繞O點(diǎn)順時(shí)針?lè)较蛐D(zhuǎn)90°,則點(diǎn)C走過(guò)的路徑長(zhǎng)為 ;
(4)在x軸上找一點(diǎn)P,使PA+PB的值最小,則點(diǎn)P的坐標(biāo)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)(k>0).
(1)當(dāng)k=時(shí),求這個(gè)二次函數(shù)的頂點(diǎn)坐標(biāo);
(2)求證:關(guān)于x的一元次方程有兩個(gè)不相等的實(shí)數(shù)根;
(3)如圖,該二次函數(shù)與x軸交于A、B兩點(diǎn)(A點(diǎn)在B點(diǎn)的左側(cè)),與y軸交于C點(diǎn),P是y軸負(fù)半軸上一點(diǎn),且OP=1,直線AP交BC于點(diǎn)Q,求證:.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了了解剛生產(chǎn)的10 000臺(tái)電視機(jī)的壽命情況,從中抽取100臺(tái)電視機(jī)進(jìn)行實(shí)驗(yàn),這個(gè)問(wèn)題中的樣本容量是________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一次函數(shù)的圖象與反比例函數(shù)(為常數(shù),且)的圖象交于A(1,a)、B兩點(diǎn).
(1)求反比例函數(shù)的表達(dá)式及點(diǎn)B的坐標(biāo);
(2)在x軸上找一點(diǎn)P,使PA+PB的值最小,求滿(mǎn)足條件的點(diǎn)P的坐標(biāo)及△PAB的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】大于1的正整數(shù)m的三次冪可“分裂”成若干個(gè)連續(xù)奇數(shù)的和,如23=3+5,33=7+9+11,43=13+15+17+19,…,若m3分裂后,其中有一個(gè)奇數(shù)是123,則m的值是( )
A.9
B.10
C.11
D.12
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com