【題目】(2016山東省菏澤市)如圖,△ACB和△DCE均為等腰三角形,點A,D,E在同一直線上,連接BE.
(1)如圖1,若∠CAB=∠CBA=∠CDE=∠CED=50°
①求證:AD=BE;
②求∠AEB的度數(shù).
(2)如圖2,若∠ACB=∠DCE=120°,CM為△DCE中DE邊上的高,BN為△ABE中AE邊上的高,試證明:AE=CM+BN.
【答案】(1)①證明見解析;②80°;(2)證明見解析.
【解析】試題(1)①通過角的計算找出∠ACD=∠BCE,再結(jié)合△ACB和△DCE均為等腰三角形可得出“AC=BC,DC=EC”,利用全等三角形的判定(SAS)即可證出△ACD≌△BCE,由此即可得出結(jié)論AD=BE;
②結(jié)合①中的△ACD≌△BCE可得出∠ADC=∠BEC,再通過角的計算即可算出∠AEB的度數(shù);
(2)根據(jù)等腰三角形的性質(zhì)結(jié)合頂角的度數(shù),即可得出底角的度數(shù),利用(1)的結(jié)論,通過解直角三角形即可求出線段AD、DE的長度,二者相加即可證出結(jié)論.
試題解析:(1)①證明:∵∠CAB=∠CBA=∠CDE=∠CED=50°,∴∠ACB=∠DCE=180°﹣2×50°=80°.
∵∠ACB=∠ACD+∠DCB,∠DCE=∠DCB+∠BCE,∴∠ACD=∠BCE.
∵△ACB和△DCE均為等腰三角形,∴AC=BC,DC=EC.
在△ACD和△BCE中,∵AC=BC,∠ACD=∠BCE,DC=EC,∴△ACD≌△BCE(SAS),∴AD=BE.
②解:∵△ACD≌△BCE,∴∠ADC=∠BEC.
∵點A,D,E在同一直線上,且∠CDE=50°,∴∠ADC=180°﹣∠CDE=130°,∴∠BEC=130°.
∵∠BEC=∠CED+∠AEB,且∠CED=50°,∴∠AEB=∠BEC﹣∠CED=130°﹣50°=80°.
(2)證明:∵△ACB和△DCE均為等腰三角形,且∠ACB=∠DCE=120°,∴∠CDM=∠CEM=×(180°﹣120°)=30°.
∵CM⊥DE,∴∠CMD=90°,DM=EM.
在Rt△CMD中,∠CMD=90°,∠CDM=30°,∴DE=2DM=2×=CM.
∵∠BEC=∠ADC=180°﹣30°=150°,∠BEC=∠CEM+∠AEB,∴∠AEB=∠BEC﹣∠CEM=150°﹣30°=120°,∴∠BEN=180°﹣120°=60°.
在Rt△BNE中,∠BNE=90°,∠BEN=60°,∴BE==BN.
∵AD=BE,AE=AD+DE,∴AE=BE+DE=CM+BN.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】隨著通訊技術(shù)的迅猛發(fā)展,人與人之間的溝通方式更多樣、便捷.某校數(shù)學(xué)興趣小組設(shè)計了“你最喜歡的溝通方式”調(diào)查問卷(每人必選且只選一種),在全校范圍內(nèi)隨機(jī)調(diào)查了部分學(xué)生,將統(tǒng)計結(jié)果繪制了如下兩幅不完整的統(tǒng)計圖,請結(jié)合圖中所給的信息解答下列問題:
(1)這次統(tǒng)計共抽查了 名學(xué)生;在扇形統(tǒng)計圖中,表示“QQ”的扇形圓心角的度數(shù)為 ;
(2)將條形統(tǒng)計圖補(bǔ)充完整;
(3)該校共有1500名學(xué)生,請估計該校最喜歡用“微信”進(jìn)行溝通的學(xué)生有多少名?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,矩形OABC在平面直角坐標(biāo)系內(nèi)的位置如圖所示,點O為坐標(biāo)原點,點A的坐標(biāo)為(10,0),點B的坐標(biāo)為(10,8),已知直線AC與雙曲線y=(m≠0)在第一象限內(nèi)有一交點Q(5,n).
(1)求直線AC和雙曲線的解析式;
(2)若動點P從A點出發(fā),沿折線AO→OC的路徑以每秒2個單位長度的速度運動,到達(dá)C處停止.求△OPQ的面積S與的運動時間t秒的函數(shù)關(guān)系式,并求當(dāng)t取何值時S=10.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,小明家的住房結(jié)構(gòu)平面圖,(單位:米),裝修房子時,他打算將臥室以外的部分都鋪上地磚,
(1)若鋪地磚的價格為80元/平方米,那么購買地磚需要花多少錢?(用代數(shù)式表示);
(2)已知房屋的高度為3米,現(xiàn)在想要在客廳和臥室的墻壁上貼上壁紙,那么需要多少平方米的壁紙(門窗所占面積忽略不計)?(用代數(shù)式表示);
(3)若x=4,y=5,且每平方米地磚的價格是90元,每平方米壁紙的價格是15元,那么,在這兩項裝修中,小明共要花費多少錢?(各種小的損耗不計).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】快遞公司為提高快遞分揀的速度,決定購買機(jī)器人來代替人工分揀.已知購買甲型機(jī)器人1臺,乙型機(jī)器人2臺,共需14萬元;購買甲型機(jī)器人2臺,乙型機(jī)器人3臺,共需24萬元.
(1)求甲、乙兩種型號的機(jī)器人每臺的價格各是多少萬元;
(2)已知甲型和乙型機(jī)器人每臺每小時分揀快遞分別是1200件和1000件,該公司計劃購買這兩種型號的機(jī)器人共8臺,總費用不超過41萬元,并且使這8臺機(jī)器人每小時分揀快遞件數(shù)總和不少于8300件,則該公司有哪幾種購買方案?哪個方案費用最低,最低費用是多少萬元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,如圖,四邊形ABCD中,AB=3cm,AD=4cm,BC=13cm,CD=12cm,且∠A=90°,求四邊形ABCD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,以下各圖都是由同樣大小的圖形①按一定規(guī)律組成,其中第①個圖形中共有1個完整菱形,第②個圖形中共有5個完整菱形,第③個圖形中共有13個完整菱形,…,則第⑦個圖形中完整菱形的個數(shù)為( 。
A. 83B. 84C. 85D. 86
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在△ABC中,∠BAC=75°,∠ACB=35°,∠ABC的平分線BD交邊AC于點D.
(1)求證:△BCD為等腰三角形;
(2)若∠BAC的平分線AE交邊BC于點E,如圖2,求證:BD+AD=AB+BE;
(3)若∠BAC外角的平分線AE交CB延長線于點E,請你探究(2)中的結(jié)論是否仍然成立?直接寫出正確的結(jié)論.
圖1 圖2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】計算:
(1)(5mn2﹣4m2n)(﹣2mn)
(2)(x+7)(x﹣6)﹣(x﹣2)(x+1)
(3) (-)2 016×161 008;
【答案】(1)﹣10m2n3+8m3n2;(2)2x﹣40;(3)1.
【解析】試題分析:(1)原式利用單項式乘以多項式法則計算即可得到結(jié)果;
(2)原式兩項利用多項式乘以多項式法則計算,去括號合并即可得到結(jié)果;
(3)先根據(jù)冪的乘方的逆運算,把(-)2 016化為()1008,再根據(jù)積的乘方的逆運算計算即可.
試題解析:(1)原式=(5mn2)(﹣2mn)+(﹣4m2n)(﹣2mn)=﹣10m2n3+8m3n2;
(2)原式=x2﹣6x+7x﹣42﹣x2﹣x+2x+2=2x﹣40.
(3)原式=()1008×161 008=(×16)1 008=1.
【題型】解答題
【結(jié)束】
19
【題目】如圖,方格圖中每個小正方形的邊長為1,點A、B、C都是格點.
(1)畫出△ABC關(guān)于直線BM對稱的△A1B1C1;
(2)寫出AA1的長度.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com