在△ABC中,分別以AB、BC為直徑的⊙O1、⊙O2,交于另一點D.
(1)證明:交點D必在AC上;
(2)如圖甲,當(dāng)⊙O1與⊙O2半徑之比為4:3,且DO2與⊙O1相切時,判斷△ABC的形狀,并求tan∠O2DB的值;
(3)如圖乙,當(dāng)⊙O1經(jīng)過點O2,AB、DO2的延長線交于E,且BE=BD時,求∠A的度數(shù).
(1)證明:∵AB為⊙O1的直徑,
∴∠ADB=90°,同理∠BDC=90°,
∴∠ADC=180°,
∴點D在AC上.

(2)如圖甲,△ABC是以∠B為直角的直角三角形.理由如下:
連接O1D,O1O2
∵DO2是⊙O1的切線,O1D是半徑,
∴∠O1DO2=90°,
∵O1D=O1B,O2D=O2B,O1O2公共,
∴△O1BO2≌△O1DO2
∴∠O1BO2=∠O1DO2=90°,
∴△ABC為直角三角形.
又∵BD⊥AC,
∴∠O2DB=∠O2BD=∠A,
∴tan∠O2DB=tan∠A=
BC
AB
=
3
4


(3)如圖乙,連接O1O2,則AC=2O1O2=AB;
令∠O2BD=x,則∠O2BD=∠O2DB=x,
∵BD=BE,
∴∠E=x,
∴∠ABD=∠E+∠BDE=2x,∠ACB=∠ABC=3x;
∵BC為⊙O2直徑,
∴∠DBC+∠C=4x=90°,
∴∠A=180°-6x=45°.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知:如圖,⊙A與y軸交于C、D兩點,圓心A的坐標(biāo)為(1,0),⊙A的半徑為
5
,過點C作⊙A的切線交x軸于點B(-4,0).

(1)求切線BC的解析式;
(2)若點P是第一象限內(nèi)⊙A上的一點,過點P作⊙A的切線與直線BC相交于點G,且∠CGP=120°,求點G的坐標(biāo);
(3)向左移動⊙A(圓心A始終保持在x軸上),與直線BC交于E、F,在移動過程中是否存在點A,使△AEF是直角三角形?若存在,求出點A的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,已知⊙O是以坐標(biāo)原點O為圓心,1為半徑的圓,∠AOB=45°,點P在x軸上運動,若過點P且與OA平行的直線與⊙O有公共點,設(shè)P(x,0),則x的取值范圍是______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知直線PA交⊙O于A、B兩點,AE是⊙O的直徑,點C為⊙O上一點,且AC平分∠PAE,過C作CD⊥PA,垂足為D.
(1)求證:CD為⊙O的切線;
(2)若DC=4,AC=5,求⊙O的直徑的AE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,PA、PB切⊙O于A、B兩點,C在
AB
AB上,過C點的切線交PA于E,交PB于F,若∠APB=50°.則∠EOF=(  )
A.45°B.50°C.65°D.75°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知:C是以AB為直徑的半圓O上一點,CH⊥AB于點H,直線AC與過B點的切線相交于點D,E為CH的中點,連接AE并延長交BD于F,直線CF交直線AB于點G.
(1)求證:點F是BD的中點;
(2)求證:CG是⊙O的切線.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖所示,過半徑為6cm的⊙O外一點P引圓的切線PA,PB,連接PO交⊙O于F,過F作⊙O的切線,交PA,PB分別于D,E,如果PO=10cm,∠APB=40°.
求:(1)△PED的周長;(2)∠DOE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,從點P向⊙O引兩條切線PA,PB,切點為A,B,BC為⊙O的直徑,若∠P=60°,PA=3,則⊙O的直徑BC的長為(  )
A.2
3
B.
3
3
C.3D.4
3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,PA切半圓O于A點,如果∠P=35°,那么∠AOP=______度.

查看答案和解析>>

同步練習(xí)冊答案