【題目】如圖,一次函數(shù)的圖象與反比例函數(shù)的圖象相交于,兩點.
(1)求一次函數(shù)和反比例函數(shù)的表達式;
(2)直線交軸于點,點是軸上的點,若的面積是,求點的坐標(biāo).
【答案】(1)一次函數(shù)的表達式為,反比例函數(shù)的表達式為;(2)(3,0)或(-5,0)
【解析】
(1)將點A坐標(biāo)代入中求得m,即可得反比例函數(shù)的表達式,據(jù)此可得點B坐標(biāo),再根據(jù)A、B兩點坐標(biāo)可得一次函數(shù)表達式;
(2)設(shè)點P(x,0),由題意解得PC的長,進而可得點P坐標(biāo).
(1)將點A(1,2)坐標(biāo)代入中得:m=1×2=2,
∴反比例函數(shù)的表達式為,
將點B(n,-1)代入中得:
,∴n=﹣2,
∴B(-2,-1),
將點A(1,2)、B(-2,-1)代入中得:
解得:,
∴一次函數(shù)的表達式為;
(2)設(shè)點P(x,0),
∵直線交軸于點,
∴由0=x+1得:x=﹣1,即C(-1,0),
∴PC=∣x+1∣,
∵的面積是,
∴
∴解得:,
∴滿足條件的點P坐標(biāo)為(3,0)或(-5,0).
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,已知拋物線與x軸交于點A(3,0)和點B,與y軸相交于點C(0,3),拋物線的頂點為點D.
(1)求拋物線的表達式及頂點D的坐標(biāo);
(2)聯(lián)結(jié)AD、AC、CD,求∠DAC的正切值;
(3)如果點P是原拋物線上的一點,且∠PAB=∠DAC,將原拋物線向右平移m個單位(m>0),使平移后新拋物線經(jīng)過點P,求平移距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】,兩地相距.甲、乙兩人都由地去地,甲騎自行車,平均速度為;乙乘汽車,平均速度為,且比甲晚出發(fā).設(shè)甲的騎行時間為.
(1)根據(jù)題意,填寫下表:
時間 與地的距離 | 0.5 | 1.8 | ______ |
甲與地的距離() | 5 | ______ | 20 |
乙與地的距離() | 0 | 12 | ______ |
(2)設(shè)甲,乙兩人與地的距離為和,寫出,關(guān)于的函數(shù)解析式;
(3)設(shè)甲,乙兩人之間的距離為,當(dāng)時,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場銷售A,B兩種品牌的教學(xué)設(shè)備,這兩種教學(xué)設(shè)備的進價和售價如下表所示:
A | B | |
進價(萬元/套) | 1.5 | 1.2 |
售價(萬元/套) | 1.65 | 1.4 |
該商場計劃購進兩種教學(xué)設(shè)備若干套,共需66萬元,全部銷售后可獲毛利潤9萬元。
(毛利潤=(售價 - 進價)×銷售量)
(1)該商場計劃購進A,B兩種品牌的教學(xué)設(shè)備各多少套?
(2)通過市場調(diào)研,該商場決定在原計劃的基礎(chǔ)上,減少A種設(shè)備的購進數(shù)量,增加B種設(shè)備的購進數(shù)量,已知B種設(shè)備增加的數(shù)量是A種設(shè)備減少數(shù)量的1.5倍。若用于購進這兩種教學(xué)設(shè)備的總資金不超過69萬元,問A種設(shè)備購進數(shù)量至多減少多少套?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知在△ABC中,BC邊上的高AD與AC邊上的高BE交于點F,且∠BAC=45°,BD=6,CD=4,則△ABC的面積為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD的面積為12,△ABC是等邊三角形,點E在正方形ABCD內(nèi),對角線AC上有一點P使PE+PD的和最小,這個最小值為( )
A. B. C. 3 D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校八年級學(xué)生小麗、小強和小紅到某超市參加了社會實踐活動,在活動中他們參與了某種水果的銷售工作.已知該水果的進價為8元/千克,下面是他們在活動結(jié)束后的對話.
小麗:如果以10元/千克的價格銷售,那么每天可售出300千克.
小強:如果每千克的利潤為3元,那么每天可售出250千克.
小紅:如果以13元/千克的價格銷售,那么每天可獲取利潤750元.
【利潤=(銷售價-進價)銷售量】
(1)請根據(jù)他們的對話填寫下表:
銷售單價x(元/kg) | 10 | 11 | 13 |
銷售量y(kg) |
(2)請你根據(jù)表格中的信息判斷每天的銷售量y(千克)與銷售單價x(元)之間存在怎樣的函數(shù)關(guān)系.并求y(千克)與x(元)(x>0)的函數(shù)關(guān)系式;
(3)設(shè)該超市銷售這種水果每天獲取的利潤為W元,求W與x的函數(shù)關(guān)系式.當(dāng)銷售單價為何值時,每天可獲得的利潤最大?最大利潤是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC中,AB=BC=5,tan∠ABC=.
(1)求邊AC的長;
(2)設(shè)邊BC的垂直平分線與邊AB的交點為D,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】圖1是一臺實物投影儀,圖2是它的示意圖,折線O﹣A﹣B﹣C表示支架,支架的一部分O﹣A﹣B是固定的,另一部分BC是可旋轉(zhuǎn)的,線段CD表示投影探頭,OM表示水平桌面,AO⊥OM,垂足為點O,且AO=7cm,∠BAO=160°,BC∥OM,CD=8cm.
將圖2中的BC繞點B向下旋轉(zhuǎn)45°,使得BCD落在BC′D′的位置(如圖3所示),此時C′D′⊥OM,AD′∥OM,AD′=16cm,求點B到水平桌面OM的距離,(參考數(shù)據(jù):sin70°≈0.94,cos70°≈0.34,cot70°≈0.36,結(jié)果精確到1cm)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com