【題目】如圖,已知△BAC為圓O內接三角形,ABAC,D⊙O上一點,連接CD、BDBDAC交于點E,且BC2ACCE

求證:∠CDB=∠CBD;

若∠D30°,且⊙O的半徑為3+,I為△BCD內心,求OI的長.

【答案】①證明見解析;②.

【解析】

先求出,然后求出△BCE和△ACB相似,根據(jù)相似三角形對應角相等可得∠A=∠CBE,再根據(jù)在同圓或等圓中,同弧所對的圓周角相等可得∠A=∠CDB,然后求出∠CDB=∠CBD;

連接OB、OC,根據(jù)在同圓或等圓中,同弧所對的圓心角等于圓周角的2倍求出∠BOC60°,然后判定△OBC是等邊三角形,再根據(jù)等腰三角形三線合一的性質以及三角形的內心的性質可得OC經過點I,設OCBD相交于點F,然后求出CF,再根據(jù)I是三角形的內心,利用三角形的面積求出IF,然后求出CI,最后根據(jù)OIOCCI計算即可得解.

①證明:∵BC2ACCE

,

BCE=∠ACB,

∴△BCE∽△ACB

∴∠CBD=∠A,

∵∠A=∠CDB,

∴∠CDB=∠CBD

②解:連接OB、OC,

∵∠A=∠D=30°,

∴∠BOC2A2×30°=60°,

OBOC,

∴△OBC是等邊三角形,

CDCBI是△BCD的內心,

OC經過點I

OCBD相交于點F,

CFBC×sin30°=BC

BFBCcos30°=BC,

所以,BD2BF2×BCBC,

設△BCD內切圓的半徑為r

SBCDBDCFBD+CD+BCr,

BCBCBC+BC+BCr,

解得rBCBC,

IFBC,

所以,CICFIFBCBC=(2BC,

OIOCCIBC﹣(2BC=(1BC,

∵⊙O的半徑為3+,

BC3+,

OI=(1)(3+)=3+332

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,直線軸交于點,與軸交于點,點的中點,繞點按順時針旋轉,且的一邊軸于點,開始時另一邊經過點,點坐標為,當旋轉過程中,射線軸的交點由點到點的過程中,則經過點三點的圓的圓心所經過的路徑長為(

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在一個不透明的盒子中放有四張分別寫有數(shù)字1、2、3、4的紅色卡片和三張分別寫有數(shù)字1、2、3的藍色卡片,卡片除顏色和數(shù)字外其它完全相同。

(1)從中任意抽取一張卡片,則該卡片上寫有數(shù)字1的概率是;

(2)將3張藍色卡片取出后放入另外一個不透明的盒子內,然后在兩個盒子內各任意抽取一張卡片,以紅色卡片上的數(shù)字作為十位數(shù),藍色卡片上的數(shù)字作為個位數(shù)組成一個兩位數(shù),求這個兩位數(shù)大于22的概率。(請利用樹狀圖或列表法說明)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】Windows2000下有一個有趣的掃雷游戲.如圖是掃雷游戲的一部分,說明:圖中數(shù)字2表示在以該數(shù)字為中心的周邊8個方格中有2個地雷,小旗表示該方格已被探明有地雷.現(xiàn)在還剩下、、三個方格未被探明,其他地方為安全區(qū)(包括有數(shù)字的方格),則、、三個方格中有地雷概率最大的方格是( )

2

2

A. A B. B C. C D. 無法確定

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,O中,弦AC、BD交于E,

1)求證:;

2)延長EBF,使EFCF,試判斷CFO的位置關系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知RtABCRtADEABCADE=90°,BCDE相交于點F,連接CD,EB.

(1)圖中還有幾對全等三角形,請你一一列舉;

(2)求證:CFEF.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,要在木里縣某林場東西方向的兩地之間修一條公路MN,已知點C周圍200 m范圍內為原始森林保護區(qū),MN上的點A處測得CA的北偏東45°方向上A向東走600 m到達B,測得C在點B的北偏西60°方向上.

1MN是否穿過原始森林保護區(qū)?為什么?(參考數(shù)據(jù): ≈1.732)

2若修路工程順利進行,要使修路工程比原計劃提前5天完成需將原定的工作效率提高25%,則原計劃完成這項工程需要多少天?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】觀察下列等式:

1個等式:

2個等式:

3等式:

4個等式:

請解答下列問題:

(1)按以上規(guī)律寫出第5個等式:a5=   =   

(2)用含n的式子表示第n個等式:an=   =   (n為正整數(shù)).

(3)求a1+a2+a3+a4+…+a2018的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,從熱氣球C上測得兩建筑物A、B底部的俯角分別為30°60度.如果這時氣球的高度CD90米.且點A、D、B在同一直線上,求建筑物A、B間的距離.

查看答案和解析>>

同步練習冊答案