【題目】在△ABC中,AB=AC=5,cos∠ABC=,將△ABC繞點(diǎn)C順時(shí)針旋轉(zhuǎn),得到△A1B1C.
(1)如圖①,當(dāng)點(diǎn)B1在線段BA延長(zhǎng)線上時(shí).①求證:BB1∥CA1;②求△AB1C的面積;
(2)如圖②,點(diǎn)E是BC邊的中點(diǎn),點(diǎn)F為線段AB上的動(dòng)點(diǎn),在△ABC繞點(diǎn)C順時(shí)針旋轉(zhuǎn)過(guò)程中,點(diǎn)F的對(duì)應(yīng)點(diǎn)是F1,求線段EF1長(zhǎng)度的最大值與最小值的差.
【答案】(1)①證明見(jiàn)試題解析;②;(2).
【解析】試題分析:(1)①根據(jù)旋轉(zhuǎn)的性質(zhì)和平行線的性質(zhì)證明;
②過(guò)A作AF⊥BC于F,過(guò)C作CE⊥AB于E,根據(jù)等腰三角形的性質(zhì)和三角形的面積公式解答;
(2)過(guò)C作CF⊥AB于F,以C為圓心CF為半徑畫(huà)圓交BC于F1,和以C為圓心BC為半徑畫(huà)圓交BC的延長(zhǎng)線于F1,得出最大和最小值解答即可.
試題解析:(1)①證明:∵AB=AC,B1C=BC,
∴∠AB1C=∠B,∠B=∠ACB,
∵∠AB1C=∠ACB(旋轉(zhuǎn)角相等),
∴∠B1CA1=∠AB1C,
∴BB1∥CA1;
②過(guò)A作AF⊥BC于F,過(guò)C作CE⊥AB于E,如圖1:
∵AB=AC,AF⊥BC,BC=6,
∴BF=CF=3,
∴B1C=BC=6,
可得:B1B=2BE,
∵EC=,
∴BE=,則BB1=,
故AB1=﹣5=,
∴△AB1C的面積為:;
(2)如圖2,過(guò)C作CF⊥AB于F,以C為圓心CF為半徑畫(huà)圓交BC于F1,EF1有最小值,
此時(shí)在Rt△BFC中,CF=,
∴CF1=,
∴EF1的最小值為﹣3=;
如圖,以C為圓心BC為半徑畫(huà)圓交BC的延長(zhǎng)線于F1,EF1有最大值;
此時(shí)EF1=EC+CF1=3+6=9,
∴線段EF1的最大值與最小值的差為9﹣=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,
(1)∠AED和∠ABC可看成是直線__________、__________被直線__________所截得的__________角;
(2)∠EDB和∠DBC可看成是直線__________、__________被直線__________所截得的__________角;
(3)∠EDC和∠C可看成是直線__________、__________被直線__________所截得的__________角.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】由方程3x-y+6=0,可得到用x表示y的式子是________;當(dāng)x=2時(shí),y=______;
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】我市某樓盤(pán)準(zhǔn)備以每平方10 000元的均價(jià)對(duì)外銷售由于國(guó)務(wù)院有關(guān)房地產(chǎn)的新政策出臺(tái)后,購(gòu)房者持幣觀望,為了加快資金周轉(zhuǎn),房地產(chǎn)開(kāi)發(fā)商對(duì)價(jià)格經(jīng)過(guò)連續(xù)兩次下調(diào)后,決定以每平方8 100元的均價(jià)開(kāi)盤(pán)銷售,則平均每次下調(diào)的百分率是( 。
A.8%B.9%C.10%D.11%
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】若(x2-px+3)(x-q)的乘積中不含x2項(xiàng),則p與q的關(guān)系是________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,線段AB=5,AB∥x軸,若A點(diǎn)坐標(biāo)為(-1,3),則B點(diǎn)坐標(biāo)為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD為平行四邊形,延長(zhǎng)AD到E,使DE=AD,連接EB,EC,DB,添加一個(gè)條件,不能使四邊形DBCE成為矩形的是( )
A.AB=BE
B.BE⊥DC
C.∠ADB=90°
D.CE⊥DE
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列說(shuō)法正確的個(gè)數(shù)是( )
①對(duì)頂角相等;
②等角的補(bǔ)角相等;
③兩直線平行,同旁內(nèi)角相等;
④在同一平面內(nèi),過(guò)一點(diǎn)有且只有一條直線與已知直線垂直
A.1B.2C.3D.4
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com