精英家教網 > 初中數學 > 題目詳情

【題目】如圖(1),PT與⊙O1相切于點T,PAB與⊙O1相交于A、B兩點,可證明△PTA∽△PBT,從而有PT2=PAPB.請應用以上結論解決下列問題:如圖(2),PAB、PCD分別與⊙O2相交于A、B、C、D四點,已知PA=2,PB=7,PC=3,則CD=

【答案】
【解析】解:如圖2中,過點P作⊙O的切線PT,切點是T.
∵PT2=PAPB=PCPD,
∵PA=2,PB=7,PC=3,
∴2×7=3×PD,
∴PD=
∴CD=PD﹣PC= ﹣3=
如圖2中,過點P作⊙O的切線PT,切點是T,根據PT2=PAPB=PCPD,求出PD即可解決問題.本題考查相似三角形的判定和性質、切線的性質等知識,解題的關鍵是理解題意,學會利用新知解決未知,屬于中考常考題型.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】在矩形ABCD中,有一個菱形BFDE(點E,F分別在線段AB,CD上),記它們的面積分別為SABCD和SBFDE , 現給出下列命題正確的是( )
①若 ,則 ;
②若DE2=BDEF,則DF=2AD.
A.①是真命題,②是真命題
B.①是真命題,②是假命題
C.①是假命題,②是真命題
D.①是假命題,②是假命題

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】在大課間活動中,體育老師隨機抽取了七年級甲、乙兩班部分女學生進行仰臥起坐的測試,并對成績進行統(tǒng)計分析,繪制了頻數分布表和統(tǒng)計圖,請你根據圖表中的信息完成下列問題:

頻數

頻率

第一組(0≤x<15)

3

0.15

第二組(15≤x<30)

6

a

第三組(30≤x<45)

7

0.35

第四組(45≤x<60)

b

0.20


(1)頻數分布表中a= , b= , 并將統(tǒng)計圖補充完整;
(2)如果該校七年級共有女生180人,估計仰臥起坐能夠一分鐘完成30或30次以上的女學生有多少人?
(3)已知第一組中只有一個甲班學生,第四組中只有一個乙班學生,老師隨機從這兩個組中各選一名學生談心得體會,則所選兩人正好都是甲班學生的概率是多少?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,直線y= x+ 與兩坐標軸分別交于A、B兩點.
(1)求∠ABO的度數;
(2)過A的直線l交x軸半軸于C,AB=AC,求直線l的函數解析式.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,D、E分別是△ABC的邊AB、BC上的點,且DE∥AC,AE、CD相交于點O,若SDOE:SCOA=1:25,則SBDE與SCDE的比是( 。
A.1:3
B.1:4
C.1:5
D.1:25

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某班數學興趣小組利用數學活動課時間測量位于烈山山頂的炎帝雕像高度,已知烈山坡面與水平面的夾角為30°,山高857.5尺,組員從山腳D處沿山坡向著雕像方向前進1620尺到達E點,在點E處測得雕像頂端A的仰角為60°,求雕像AB的高度.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,某中學為合理安排體育活動,在全校喜歡乒乓球、排球、羽毛球、足球、籃球五種球類運動的1000名學生中,隨機抽取了若干名學生進行調查,了解學生最喜歡的一種球類運動,每人只能在這五種球類運動中選擇一種.調查結果統(tǒng)計如下:

球類名稱

乒乓球

排球

羽毛球

足球

籃球

人數

a

12

36

18

b


解答下列問題:
(1)本次調查中的樣本容量是
(2)a= , b=;
(3)試估計上述1000名學生中最喜歡羽毛球運動的人數.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,E是ABCD的邊CD上一點,連接AE并延長交BC的延長線于點F,且AD=4, = ,則CF的長為

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】計算:
(1)|﹣4|×( ﹣1)0﹣2
(2)解不等式:3x>2(x+1)﹣1.

查看答案和解析>>

同步練習冊答案