如圖,拋物線的圖象與x軸交于A、B兩點(diǎn),與y軸交于C點(diǎn),已知點(diǎn)B坐標(biāo)為(4,0).

(1)求拋物線的解析式;

(2)判斷△ABC的形狀,說(shuō)出△ABC外接圓的圓心位置,并求出圓心的坐標(biāo).

 

【答案】

(1);(2)該外接圓的圓心為AB的中點(diǎn),且坐標(biāo)為:

【解析】

試題分析:(1)該函數(shù)解析式只有一個(gè)待定系數(shù),只需將B點(diǎn)坐標(biāo)代入解析式中即可求解;

(2)首先根據(jù)拋物線的解析式確定A點(diǎn)、B點(diǎn)、C點(diǎn)坐標(biāo),然后通過(guò)證明△ABC是直角三角形來(lái)推導(dǎo)出直徑AB和圓心的位置,由此確定圓心坐標(biāo).

試題解析:(1)∵點(diǎn)B(4,0)在拋物線的圖象上,∴,∴.∴拋物線的解析式為:;

(2)△ABC為直角三角形.令x=0,得:y=-2,∴C(0,-2),令y=0,得,∴x1=-1,x2=4,∴A(-1,0),B(4,0),∴AB=5,AC=5BC=20,∴AC2+BC2=AB2,∴△ABC為直角三角形,∴AB為△ABC外接圓的直徑,∴該外接圓的圓心為AB的中點(diǎn),且坐標(biāo)為:

考點(diǎn): ①待定系數(shù)法求二次函數(shù)解析式;②勾股定理逆定理;③三角形的外心

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,拋物線y=ax2+2ax-b與x軸交于A、B兩點(diǎn),與y軸正半軸交于C點(diǎn),且A(-4,0),OC=2OB.
(1)求出拋物線的解析式;
(2)如圖①,作矩形ABDE,使DE過(guò)點(diǎn)C,點(diǎn)P是AB邊上的一動(dòng)點(diǎn),連接PE,作PF⊥PE交BD于點(diǎn)F.設(shè)線段PB的長(zhǎng)為x,線段BF的長(zhǎng)為
1
2
y
.當(dāng)P點(diǎn)運(yùn)動(dòng)時(shí),求y與x的函數(shù)關(guān)系式并寫(xiě)出自變量x的取值范圍,在同一直角坐標(biāo)系中,該函數(shù)的圖象與圖①的拋物線中y≥0的部分有何關(guān)系?
(3)如圖②,在圖①的拋物線中,點(diǎn)H為其頂點(diǎn),G為拋物線上一動(dòng)點(diǎn)(不與H重合),取點(diǎn)N(-1,0),作MN⊥GN且MN=
2
3
GN
(點(diǎn)M、N、G按逆時(shí)針順序),當(dāng)點(diǎn)G在拋物線上運(yùn)動(dòng)時(shí),直線AM、GH是否存在某種位置關(guān)系?若存在,寫(xiě)出并證明你的結(jié)論;若不存在,請(qǐng)說(shuō)明理由. 精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2013年湖北省中考數(shù)學(xué)預(yù)測(cè)試卷(解析版) 題型:解答題

如圖,拋物線的圖象與x軸交于A、B兩點(diǎn),與y軸交于C點(diǎn),已知B點(diǎn)坐標(biāo)為(4,0).
(1)求拋物線的解析式;
(2)試探究△ABC的外接圓的圓心位置,并求出圓心坐標(biāo);
(3)若點(diǎn)M是線段BC下方的拋物線上一點(diǎn),求△MBC的面積的最大值,并求出此時(shí)M點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2013年廣東省深圳市育才二中中考數(shù)學(xué)一模試卷(解析版) 題型:解答題

如圖,拋物線的圖象與x軸交于A、B兩點(diǎn),與y軸交于C點(diǎn),已知B點(diǎn)坐標(biāo)為(4,0).
(1)求拋物線的解析式;
(2)試探究△ABC的外接圓的圓心位置,并求出圓心坐標(biāo);
(3)若點(diǎn)M是線段BC下方的拋物線上一點(diǎn),求△MBC的面積的最大值,并求出此時(shí)M點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年江蘇省鹽城市濱?h九年級(jí)下學(xué)期期末調(diào)研數(shù)學(xué)試卷(解析版) 題型:解答題

如圖,拋物線的圖象與x軸交于A、B兩點(diǎn),與y軸交于C點(diǎn),已知點(diǎn)B坐標(biāo)為(4,0).

(1)求拋物線的解析式;

(2)判斷△ABC的形狀,說(shuō)出△ABC外接圓的圓心位置,并求出圓心的坐標(biāo).

 

查看答案和解析>>

同步練習(xí)冊(cè)答案