【題目】定義:對任意一個(gè)兩位數(shù),如果滿足個(gè)位數(shù)字與十位數(shù)字互不相同,且都不為零,那么稱這個(gè)兩位數(shù)為“迥異數(shù)”,將一個(gè)“迥異數(shù)”的個(gè)位數(shù)字與十位數(shù)字對調(diào)后得到一個(gè)新的兩位數(shù),把這個(gè)新兩位數(shù)與原兩位數(shù)的和與11的商記為.例如:,對調(diào)個(gè)位數(shù)字與十位數(shù)字得到新兩位數(shù)21,新兩位數(shù)與原兩位數(shù)的和為21+12=33,和與11的商為33÷11=3,所以.根據(jù)以上定義,回答下列問題:
(1)填空:①下列兩位數(shù):40,42,44中,“迥異數(shù)”為_______;②計(jì)算:=_______;
(2)如果一個(gè)“迥異數(shù)”的十位數(shù)字是,個(gè)位數(shù)字是,且,請求出“迥異數(shù)”.
【答案】(1)①42②5(2)38
【解析】
(1)①由“迥異數(shù)”的定義可得;
②根據(jù)的定義計(jì)算可得;
(2)根據(jù)一個(gè)十位數(shù)10m+n,其f(10m+n)=m+n,可求k的值,即可求b.
(1)①∵對任意一個(gè)兩位數(shù)a,如果a滿足個(gè)位數(shù)字與十位數(shù)字互不相同,且都不為零,那么稱這個(gè)兩位數(shù)為“迥異數(shù)”.
∴40,42,44中,“迥異數(shù)”為42
故答案為:42
②f(23)=(23+32)÷11=5,
故答案為:5;
(2)對于一個(gè)十位數(shù)10m+n,
f(10m+n)=(10m+n+10n+m)÷11=m+n
∴f(10m+n)=m+n,
又f(b)=11
∴k+2(k+1)=11
∴k=3
∴b=10×3+2(3+1)=38.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC的周長是21,BO、CO分別平分∠ABC和∠ACB,OD⊥BC于D,OE⊥AB,OF⊥AC,且OD=3.
(1)試判斷線段OD、OE、OF的大小關(guān)系.
(2)求△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠BAC=90°,AC=2AB,點(diǎn)D是AC的中點(diǎn).將一塊銳角為45°的直角三角板如圖放置,使三角板斜邊的兩個(gè)端點(diǎn)分別與A、D重合,連接BE、EC.
試猜想線段BE和EC的數(shù)量及位置關(guān)系,并證明你的猜想.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)的坐標(biāo)為.
(1)若點(diǎn)在軸上,求點(diǎn)坐標(biāo).
(2)若點(diǎn)P到兩坐標(biāo)軸的距離相等,求點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】體育課上,某中學(xué)對七年級男生進(jìn)行跳繩測試,以130個(gè)/分鐘為準(zhǔn),超過的次數(shù)記為正數(shù),不足的次數(shù)記為負(fù)數(shù).其中8名男生的成績分別為,0.
(1)這8名男生達(dá)到標(biāo)準(zhǔn)的百分率是多少?
(2)他們共跳了多少個(gè)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,Rt△ABC中,BC=4,AC=8,Rt△ABC的斜邊在x軸的正半軸上,點(diǎn)A與原點(diǎn)重合,隨著頂點(diǎn)A由O點(diǎn)出發(fā)沿y軸的正半軸方向滑動,點(diǎn)B也沿著x軸向點(diǎn)O滑動,直到與點(diǎn)O重合時(shí)運(yùn)動結(jié)束.在這個(gè)運(yùn)動過程中.
(1)AB中點(diǎn)P經(jīng)過的路徑長_____.
(2)點(diǎn)C運(yùn)動的路徑長是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖(1),已知:在△ABC中,∠BAC=90°,AB=AC,直線m經(jīng)過點(diǎn)A,BD⊥直線m, CE⊥直線m,垂足分別為點(diǎn)D、E.證明:DE=BD+CE.
(2) 如圖(2),將(1)中的條件改為:在△ABC中,AB=AC,D、A、E三點(diǎn)都在直線m上,并且有∠BDA=∠AEC=∠BAC=,其中為任意銳角或鈍角.請問結(jié)論DE=BD+CE是否成立?如成立,請你給出證明;若不成立,請說明理由.
(3)拓展與應(yīng)用:如圖(3),D、E是D、A、E三點(diǎn)所在直線m上的兩動點(diǎn)(D、A、E三點(diǎn)互不重合),點(diǎn)F為∠BAC平分線上的一點(diǎn),且△ABF和△ACF均為等邊三角形,連接BD、CE,若∠BDA=∠AEC=∠BAC,試判斷△DEF的形狀.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠AOB=60°,C是BO延長線上一點(diǎn),OC=12cm,動點(diǎn)P從點(diǎn)C出發(fā)沿CB以2cm/s的速度移動,動點(diǎn)Q從點(diǎn)O出發(fā)沿OA以1cm/s的速度移動,如果點(diǎn)P、Q同時(shí)出發(fā),用t(s)表示移動的時(shí)間,當(dāng)t=_____s時(shí),△POQ是等腰三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】 在某次數(shù)學(xué)測試中,滿分為100分,各測試內(nèi)容及所占分值的分布情況如下扇形統(tǒng)計(jì)圖,則以下結(jié)論正確的是( 。
①一元一次不等式(組)部分與二元一次方程組部分所占分值一樣
②因式分解部分在試卷上占10分
③整式的運(yùn)算部分在整張?jiān)嚲碇兴急壤秊?/span>25%
④觀察、猜想與證明部分的圓心角度數(shù)為72°
A.①②③B.②③④C.①④D.①②③④
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com