【題目】如圖,在平面直角坐標(biāo)系中,已知,,為線段上的動(dòng)點(diǎn),以為邊向右側(cè)作正方形,連接于點(diǎn),則的最大值______.

【答案】

【解析】

作FQ⊥y軸于點(diǎn)Q,證△AFQ≌△DAO得FQ=OA=6,求出FQ=OC,結(jié)合FQ∥OC且∠FQO=90°證四邊形OCFQ是矩形,從而得∠PCD=∠AOD=90°,設(shè)OD=x,則CD=6-x(2≤x≤6),再證△AOD∽△DCP得,即則,即PC=-x2+x=-(x-3)2+,據(jù)此可得答案.

解:如圖,作FQ⊥y軸于點(diǎn)Q,

∵FQ⊥y
∴在Rt△AFQ中,∠FAQ+∠AFQ=90°,∠FQA=90°
∵四邊形ADEF是正方形,
∴FA=AD,∠FAD=90°,
∴∠FAQ+∠DAO=90°,
∴∠AFQ=∠DAO,

∵∠AOD=90°

∴∠FQA=∠AOD
在△AFQ和△DAO中,

∴△AFQ≌△DAO(AAS),
∴FQ=OA=6,

∴FQ=OC

又∵∠FQA=∠AOD
∴FQ∥OC,

∴四邊形OCFQ是平行四邊形

∵∠FQO=90°,
∴四邊形OCFQ是矩形,

∴∠PCD=∠AOD=90°

∴∠PDC+∠CPD=90°,
∵∠ADE=90°

∴∠ADO+∠PDC=90°,

∴∠CPD=∠ADO
∴△AOD∽△DCP,
,
設(shè)OD=x,則CD=6-x (2≤x≤6),
,
即PC=-x2+x=-(x-3)2+,
∴當(dāng)x=3時(shí),PC最大=,
故答案為:

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】綜合與探究

如圖,在平面直角坐標(biāo)系中,直線分別與軸,軸交于點(diǎn)和點(diǎn),拋物線經(jīng)過兩點(diǎn),并且與軸交于另一點(diǎn).點(diǎn)為第四象限拋物線上一動(dòng)點(diǎn)(不與點(diǎn)重合),過點(diǎn)軸,垂足為,交直線于點(diǎn),連接.設(shè)點(diǎn)的橫坐標(biāo)為.

(1)求拋物線的解析式;

(2)當(dāng)時(shí),求出此時(shí)的值;

(3)點(diǎn)在運(yùn)動(dòng)的過程中,的周長是否存在最小值?若存在,求出此時(shí)的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知一次函數(shù)ykx+b的圖象交反比例函數(shù)的圖象于點(diǎn)A2,﹣4)和點(diǎn)Bn,﹣2),交x軸于點(diǎn)C

1)求這兩個(gè)函數(shù)的表達(dá)式;

2)求AOB的面積;

3)請直接寫出使一次函數(shù)值大于反比例函數(shù)值的x的范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某超市對今年元旦期間銷售A、B、C三種品牌的綠色雞蛋情況進(jìn)行了統(tǒng)計(jì),并繪制如圖所示的扇形統(tǒng)計(jì)圖和條形統(tǒng)計(jì)圖.根據(jù)圖中信息解答下列問題:

1)該超市元旦期間共銷售   個(gè)綠色雞蛋,A品牌綠色雞蛋在扇形統(tǒng)計(jì)圖中所對應(yīng)的扇形圓心角是   度;

2)補(bǔ)全條形統(tǒng)計(jì)圖;

3)如果該超市的另一分店在元旦期間共銷售這三種品牌的綠色雞蛋1500個(gè),請你估計(jì)這個(gè)分店銷售的B種品牌的綠色雞蛋的個(gè)數(shù)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某農(nóng)科所在相同條件下做某種作物種子發(fā)芽率的試驗(yàn),結(jié)果如表所示:

種子個(gè)數(shù)n

1000

1500

2500

4000

8000

15000

20000

30000

發(fā)芽種子個(gè)數(shù)m

899

1365

2245

3644

7272

13680

18160

27300

發(fā)芽種子頻率

0.899

0.910

0.898

0.911

0.909

0.912

0.908

0.910

則該作物種子發(fā)芽的概率約為_____________.(保留一位小數(shù))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,中,,,動(dòng)點(diǎn)從點(diǎn)出發(fā),在邊上以每秒的速度向點(diǎn)勻速運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)從點(diǎn)出發(fā),在邊上以每秒的速度向點(diǎn)勻速運(yùn)動(dòng),運(yùn)動(dòng)時(shí)間為秒(),連接.

1)若相似,求的值;

2)連接,,若,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,現(xiàn)有一張三角形紙片,,點(diǎn),分別是,中點(diǎn),點(diǎn)上一定點(diǎn),點(diǎn)上一動(dòng)點(diǎn)。將紙片依次沿剪開,得到Ⅰ、Ⅱ和三部分,將Ⅱ繞點(diǎn)順時(shí)針旋轉(zhuǎn),重合,將Ⅲ繞點(diǎn)逆時(shí)針旋轉(zhuǎn),使重合,拼成了一個(gè)新的圖形,則這個(gè)新圖形周長的最小值是(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線軸于、兩點(diǎn),為拋物線上一點(diǎn),且橫縱坐標(biāo)相等(原點(diǎn)除外),為拋物線上一動(dòng)點(diǎn),過軸的垂線,垂足為,并與直線交于點(diǎn).

(1)兩點(diǎn)的坐標(biāo).

(2)當(dāng)點(diǎn)在線段上方時(shí),過軸的平行線與直線相交于點(diǎn),求周長的最大值及此時(shí)點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,DAC邊上的中點(diǎn),連結(jié)BD,把△BDC′沿BD翻折,得到△,DCAB交于點(diǎn)E,連結(jié),若AD=AC′=2BD=3則點(diǎn)DBC的距離為( )

A.B.C.D.

查看答案和解析>>

同步練習(xí)冊答案