【題目】在平面直角坐標(biāo)系xOy中,點(diǎn)P(x0,y0)到直線Ax+By+C=0(A2+B2≠0)的距離公式為:d=,
例如,求點(diǎn)P(1,3)到直線4x+3y﹣3=0的距離.
解:由直線4x+3y﹣3=0知:A=4,B=3,C=﹣3
所以P(1,3)到直線4x+3y﹣3=0的距離為:d==2
根據(jù)以上材料,解決下列問題:
(1)求點(diǎn)P1(1,-1)到直線3x﹣4y﹣5=0的距離.
(2)已知:⊙C是以點(diǎn)C(2,1)為圓心,1為半徑的圓,⊙C與直線y=﹣x+b相切,求實(shí)數(shù)b的值;
(3)如圖,設(shè)點(diǎn)P為問題2中⊙C上的任意一點(diǎn),點(diǎn)A,B為直線3x+4y+5=0上的兩點(diǎn),且AB=2,請(qǐng)求出△ABP面積的最大值和最小值.
【答案】(1)d=; (2)b=或;(3)S△ABP的最大值為4,S△ABP的最小值為2.
【解析】
(1)根據(jù)點(diǎn)到直線的距離公式就是即可;
(2)根據(jù)點(diǎn)到直線的距離公式,列出方程即可解決問題.
(3)求出圓心C到直線4x+3y+5=0的距離,求出⊙C上點(diǎn)P到直線4x+3y+5=0的距離的最大值以及最小值即可解決問題.
(1)點(diǎn)P1(1,﹣1)到直線3x﹣4y﹣5=0的距離d=,
(2)∵⊙C與直線y=﹣x+b相切,⊙C的半徑為1,
∴C(2,1)到直線3x+4y﹣4b=0的距離d=1,
∴=1,
解得b=或.
(3)點(diǎn)C(2,1)到直線3x+4y+5=0的距離d==3,
∴⊙C上點(diǎn)P到直線3x+4y+5=0的距離的最大值為4,最小值為2,
∴S△ABP的最大值=×2×4=4,S△ABP的最小值=×2×2=2.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,∠ABC=90,AB=3,BC=4,CD=10,DA=,則四邊形ABCD的面積為=____________,BD的長(zhǎng)為____________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知菱形在平面直角坐標(biāo)系的位置如圖所示,,,,點(diǎn)是對(duì)角線上的一個(gè)動(dòng)點(diǎn),,當(dāng)周長(zhǎng)最小時(shí),點(diǎn)的坐標(biāo)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,拋物線y=交x軸于點(diǎn)A、B(點(diǎn)A在點(diǎn)B的左側(cè)),交y軸于點(diǎn)C.
(1)如圖,點(diǎn)D是拋物線在第二象限內(nèi)的一點(diǎn),且滿足|xD﹣xA|=2,過點(diǎn)D作AC的平行線,分別與x軸、射線CB交于點(diǎn)F、E,點(diǎn)P為直線AC下方拋物線上的一動(dòng)點(diǎn),連接PD交線段AC于點(diǎn)Q,當(dāng)四邊形PQEF的面積最大時(shí),在y軸上找一點(diǎn)M,x軸上找一點(diǎn)N,使得PM+MN﹣NB取得最小值,求這個(gè)最小值;
(2)如圖2,將△BOC沿著直線AC平移得到△B′O′C′,再將△B'O′C′沿B′C′翻折得到△B′O″C′,連接BC′、O″B,則△C′BO″能否構(gòu)成等腰三角形?若能,請(qǐng)直接寫出所有符合條件的點(diǎn)O″的坐標(biāo),若不能,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,以Rt△ABC的AC邊為直徑作⊙O交斜邊AB于點(diǎn)E,連接EO并延長(zhǎng)交BC的延長(zhǎng)線于點(diǎn)D,點(diǎn)P為BC的中點(diǎn),連接EP,AD.
(1)求證:PE是⊙O的切線;
(2)若⊙O的半徑為3,∠B=30°,求P點(diǎn)到直線AD的距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了解學(xué)生對(duì)籃球、羽毛球、乒乓球、踢毽子、跳繩等5項(xiàng)體育活動(dòng)的喜歡程度,某校隨機(jī)抽查部分學(xué)生,對(duì)他們最喜歡的體育項(xiàng)目(每人只選一項(xiàng))進(jìn)行了問卷調(diào)查,并將統(tǒng)計(jì)數(shù)據(jù)繪制成如下兩幅不完整的統(tǒng)計(jì)圖:
請(qǐng)解答下列問題:
(1)m= %,這次共抽取了 名學(xué)生進(jìn)行調(diào)查;請(qǐng)補(bǔ)全條形統(tǒng)計(jì)圖;
(2)若全校有800名學(xué)生,則該校約有多少名學(xué)生喜愛打籃球?
(3)學(xué)校準(zhǔn)備從喜歡跳繩活動(dòng)的4人(二男二女)中隨機(jī)選取2人進(jìn)行體能測(cè)試,求抽到一男一女學(xué)生的概率是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,邊長(zhǎng)為2的正方形ABCD關(guān)于y軸對(duì)稱,邊AD在x軸上,點(diǎn)B在第四象限,直線BD與反比例函數(shù)的圖象交于點(diǎn)B、E.
(1)求反比例函數(shù)及直線BD的解析式;
(2)求點(diǎn)E的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,等腰直角中,,過點(diǎn),的圓交于點(diǎn),交于點(diǎn),連結(jié).
(1)若,,分別求,的長(zhǎng)
(2)如圖2,連結(jié),若,的面積為10,求.
(3)如圖3,在圓上取點(diǎn)使得(點(diǎn)與點(diǎn)不重合),連結(jié),且點(diǎn)是的內(nèi)心
①請(qǐng)你畫出,說明畫圖過程并求的度數(shù).
②設(shè),,,若,求的內(nèi)切圓半徑長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,反比例函數(shù)y=(k>0)的圖象與一次函數(shù)y=x的圖象交于A、B兩點(diǎn)(點(diǎn)A在第一象限).若點(diǎn)A的橫坐標(biāo)為4.
(1)求k的值.
(2)根據(jù)圖象,直接寫出當(dāng)>x時(shí),x的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com