如圖,以扇形OAB的頂點(diǎn)O為原點(diǎn),半徑OB所在的直線為軸,建立平面直角坐標(biāo)系,點(diǎn)B的坐標(biāo)為(2,0),若拋物線與扇形OAB的邊界總有兩個(gè)公共點(diǎn),則實(shí)數(shù)的取值范圍是 .
-2<k<.
解析試題分析:根據(jù)∠AOB=45°求出直線OA的解析式,然后與拋物線解析式聯(lián)立求出有一個(gè)公共點(diǎn)時(shí)的k值,即為一個(gè)交點(diǎn)時(shí)的最大值,再求出拋物線經(jīng)過(guò)點(diǎn)B時(shí)的k的值,即為一個(gè)交點(diǎn)時(shí)的最小值,然后寫(xiě)出k的取值范圍即可.
試題解析:由圖可知,∠AOB=45°,
∴直線OA的解析式為y=x,
聯(lián)立
消掉y得,x2-2x+2k=0,
△=b2-4ac=(-2)2-4×1×2k=0,
即k=時(shí),拋物線與OA有一個(gè)交點(diǎn),
此交點(diǎn)的橫坐標(biāo)為1,
∵點(diǎn)B的坐標(biāo)為(2,0),
∴OA=2,
∴點(diǎn)A的坐標(biāo)為(,),
∴交點(diǎn)在線段AO上;
當(dāng)拋物線經(jīng)過(guò)點(diǎn)B(2,0)時(shí),×4+k=0,
解得k=-2,
∴要使拋物線y=x2+k與扇形OAB的邊界總有兩個(gè)公共點(diǎn),實(shí)數(shù)k的取值范圍是-2<k<.
考點(diǎn): 二次函數(shù)的性質(zhì).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:單選題
拋物線y = -(x+1)2+3的頂點(diǎn)坐標(biāo)( )
A.(1,3) | B.(1,-3) | C.(-1,3) | D.(-1,-3) |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
二次函數(shù)y=ax2+bx+c(a,b,c是常數(shù),a≠0)的圖象的對(duì)稱軸是直線x=1,其圖象的一部分如圖所示,對(duì)于下列說(shuō)法:
①abc<0;②a-b+c<0;③3a+c<0;④當(dāng)-1<x<3時(shí),y>0.
其中正確的是________.(把正確的序號(hào)都填上).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
如圖,小李投擲鉛球,如果鉛球運(yùn)行時(shí)離地面的高度y(米)關(guān)于水平距離x(米)的函數(shù)解析式為什那么鉛球運(yùn)動(dòng)過(guò)程中最高點(diǎn)離地面的距離____米。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
點(diǎn)A(2,y1)、B(3,y2)是二次函數(shù)y=x2-2x+1的圖象上兩點(diǎn),則y1與y2的大小關(guān)系為y1________y2(填“>”、“<”、“=”).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com