【題目】若一個(gè)兩位數(shù)恰等于它的各位數(shù)字之和的則這個(gè)兩位數(shù)稱為巧數(shù)”.不是巧數(shù)的兩位數(shù)有______個(gè)

【答案】86

【解析】

首先根據(jù)題意這個(gè)兩位數(shù)為,即可得到方程:10x+y=4(x+y),化簡得y=2x,又由x,y是不為0的一位數(shù),分析得到這樣的巧數(shù)4個(gè),即可求得不是巧數(shù)的兩位數(shù)的個(gè)數(shù).

設(shè)這個(gè)兩位數(shù)為

∵這個(gè)兩位數(shù)恰等于它的各位數(shù)字之和的4倍,

10x+y=4(x+y),

y=2x,

xy是不為0的一位數(shù),

x<5,

∴當(dāng)x=1時(shí),y=2,則此兩位數(shù)為12;

當(dāng)x=2時(shí),y=4,則此兩位數(shù)為24;

當(dāng)x=3時(shí),y=6,則此兩位數(shù)為36;

當(dāng)x=4時(shí),y=8,則此兩位數(shù)為48;

∴這樣的巧數(shù)4個(gè),

∵兩位數(shù)共有90個(gè),

∴不是巧數(shù)的兩位數(shù)的個(gè)數(shù)是:904=86(個(gè)).

故答案為:86.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ADBEABC的角平分線,D,E分別在BC,AC上,若AD=AB,BE=BC,則∠C=(  )

A. 69° B. C. D. 不能確定

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的方程(x﹣3)(x﹣2)﹣p2=0.
(1)求證:無論p取何值時(shí),方程總有兩個(gè)不相等的實(shí)數(shù)根;
(2)設(shè)方程兩實(shí)數(shù)根分別為x1 , x2 , 且滿足 ,求實(shí)數(shù)p的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計(jì)算:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,菱形ABCD的對(duì)角線AC,BD相交于O,點(diǎn)E,F(xiàn)分別是AD,DC的中點(diǎn),已知OE=,EF=3,求菱形ABCD的周長和面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,ADBC邊上的高,AE、BF分別是∠BAC、ABC的平分線,∠BAC=50°,ABC=60°,則∠EAD+ACD=( 。

A. 75° B. 80° C. 85° D. 90°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB∥CD,直線EF分別交AB,CD于點(diǎn)E,F(xiàn),∠BEF的平分線與∠DFE的平分線相交于點(diǎn)P,試說明△EPF為直角三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖, 已知BE平分∠ABD, DE平分∠BDC, 并且∠1+3=90°, _____理由是____________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,二次函數(shù)y=﹣x2+bx+c的圖象過點(diǎn)A(3,0),B(0,4)兩點(diǎn),動(dòng)點(diǎn)P從A出發(fā),在線段AB上沿A→B的方向以每秒2個(gè)單位長度的速度運(yùn)動(dòng),過點(diǎn)P作PD⊥y于點(diǎn)D,交拋物線于點(diǎn)C.設(shè)運(yùn)動(dòng)時(shí)間為t(秒).

(1)求二次函數(shù)y=﹣x2+bx+c的表達(dá)式;
(2)連接BC,當(dāng)t= 時(shí),求△BCP的面積;
(3)如圖2,動(dòng)點(diǎn)P從A出發(fā)時(shí),動(dòng)點(diǎn)Q同時(shí)從O出發(fā),在線段OA上沿O→A的方向以1個(gè)單位長度的速度運(yùn)動(dòng).當(dāng)點(diǎn)P與B重合時(shí),P、Q兩點(diǎn)同時(shí)停止運(yùn)動(dòng),連接DQ,PQ,將△DPQ沿直線PC折疊得到△DPE.在運(yùn)動(dòng)過程中,設(shè)△DPE和△OAB重合部分的面積為S,直接寫出S與t的函數(shù)關(guān)系及t的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案